AVS 56th International Symposium & Exhibition | |
Plasma Science and Technology | Tuesday Sessions |
Session PS-TuP |
Session: | Plasma Science and Technology Poster Session |
Presenter: | N.-E. Lee, Sungkyunkwan University, Korea |
Authors: | J.S. Kim, Sungkyunkwan University, Korea N.-E. Lee, Sungkyunkwan University, Korea |
Correspondent: | Click to Email |
For the fabrication of a multilevel resist (MLR) based on amorphous carbon (a-C) layer and Si3N4 hard-mask layer (underlayer), etch selectivity of the Si3N4/a-C layer becomes increasingly critical with the feature size reduction. In this work, therefore, the highly selective etching process of the Si3N4 layer using chemical-vapor-deposited (CVD) a-C etch-mask was investigated by varying the following process parameters in CH2F2/H2/Ar plasmas: etch gas flow ratio, high-frequency source power (PHF) and low-frequency source power (PLF) in a dual-frequency superimposed capacitively coupled plasma etcher. It was found that infinitely high etch selectivities of the Si3N4 layers to the CVD a-C on both the blanket and patterned wafers could be obtained for certain process conditions. In particular, the etch gas flow ratio was found to play a critical role in determining the process window for infinite Si3N4/CVD a-C etch selectivity, due to the change in the degree of polymerization. The etch results of patterned ArF PR/BARC(bottom anti-reflective coating)/SiOx/CVD a-C/Si3N4 MLR structure supported the possibility of using a infinitely high selective etch processes of the Si3N4 layer using a very thin CVD a-C etch-mask for reduced overall aspect ratio of MLR structure during patterning.