AVS 56th International Symposium & Exhibition | |
Plasma Science and Technology | Tuesday Sessions |
Session PS-TuP |
Session: | Plasma Science and Technology Poster Session |
Presenter: | J.S. Oh, Sungkyunkwan University, Republic of Korea |
Authors: | J.S. Oh, Sungkyunkwan University, Republic of Korea J.B. Park, Sungkyunkwan University, Republic of Korea E.L. Gil, Sungkyunkwan University, Republic of Korea G.Y. Yeom, Sungkyunkwan University, Republic of Korea |
Correspondent: | Click to Email |
These days, atmospheric pressure plasmas are being investigated as the application to the flat panel display device processing such as indium tin oxide etching, the deposition and etching of thin film transistor materials (SiO2, amorphous silicon, and Si3N4) in addition to the surface treatment. Especially, among the various atmospheric pressure plasmas sources, much attention has been paid to Dielectric Barrier Discharge (DBD) due to its potential to numerous industrial applications such as plasma ashing, etching, thin film deposition, etc. The DBD, which is consisted of two parallel electrodes covered by dielectric plates, has been studied most widely due to the easier generation of stable glow discharges and the possibility of large-area plasma processing compared with other atmospheric pressure plasma sources.
In this study, using a modified DBD called “pin-to-plate DBD”, SiO2 was etched and its plasma characteristics were investigated. Especially, the effect of additive gas such as CF4 and C4F8 gas to the gas mixture of N2 (60 slm)/ NF3 (600 sccm) on the SiO2 etch characteristics was investigated. The results showed that the increase of C4F8 (200 ~ 800 sccm) to the gas mixture decreased the SiO2 etch rate continuously, while, the addition and increase of CF4 (1 ~ 10 slm) to the gas mixture increased the SiO2 etch rate until 7 slm of CF4 was added and the further increase of CF4 decreased the SiO2 etch rate . The increase of SiO2 etch rate up to 7 slm CF4 is from the effective removal of Si in SiO2 by F atom through the removal of oxygen in SiO2 by carbon in CFX in the plasma. However, the decrease of SiO2 etch rate with further increase of CF4 was related to the formation of a thick C-F polymer layer formed on the SiO2 surface. The SiO2 etch rate of about 243 nm/min could be obtained with the gas mixture of N2 (60 slm)/ NF3 (600 sccm)/ CF4 (7 slm) when input voltage and operating frequency to the source were 10 kV and 30 kHz, respectively.