AVS 60th International Symposium and Exhibition
    Applied Surface Science Monday Sessions
       Session AS-MoA

Paper AS-MoA4
TOF-MEIS Analysis of Nanostructured Materials

Monday, October 28, 2013, 3:00 pm, Room 204

Session: Analyses Using Novel Ion Beams
Presenter: D. Moon, DGIST, Republic of Korea
Authors: K. Jung, DGIST, Republic of Korea
W. Min, KMAC, Republic of Korea
H. Yu, KRISS, Republic of Korea
K. Yu, KMAC, Republic of Korea
M. Sirtica, UFRGS, Brazil
P.L. Grande, UFRGS, Brazil
D. Moon, DGIST, Republic of Korea
Correspondent: Click to Email

We report the quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS QDs with a conjugated layer and ultra shallow junctions of As and B implanted Si using a newly developed time-of-flight medium energy ion scattering (MEIS)/Direct Recoil (DR) spectroscopy, which utilizes a pulsed 70~100 keV He+ and Ne+ ion beam of ~ 10 µm diameter for energy resolution of ~5x10-3 .

The composition and core shell structure of CdSe cores and ZnS shells were determined with ~1% uncertainty and ~0.1 nm resolution, respectively. The number of conjugated molecules per QD can be also determined quantitatively. The composition and size of QDs estimated with TOF-MEIS were compared with XPS and HRTEM, respectively.

As depth profiles in As/Si ultra shallow junctions (USJs) were measured by TOF-MEIS for 2 keV As implantation ion energy with the nominal ion dose of 2x1015/cm2 before and after annealing. Before annealing, the As profile shows a Gaussian shaped distribution with the ion range at 4~5 nm. After annealing, the As atoms diffused out to 3~4 nm with a skewed Gaussian distribution with a extended tail to 11 nm. The dependence of the As profiles on annealing conditions were also observed. The As depth profiles measured by dynamic SIMS were compared with those from TOF-MEIS, which clearly shows the surface transient effect and ion beam mixing effect. Quantitative As depth profiles from TOF-MEIS were compared with SIMS profiles for the calibration of SIMS artifacts in USJ depth profiling. Light elements in heavy substrates can be hardly measured by ion scattering spectroscopy in general. We demonstrated that the TOF-MEIS can be used in the direct recoil mode for the depth profiling analysis of B in B/Si USJ before and after annealing.

With this new TOF-MEIS nano analysis technique, the core-shell structure with conjugated layer structure of QDs, activated As depth profiles in As/Si USJ, B depth profiles in B/Si USJ could be measured quantitatively. Progresses in TOF-MEIS analysis of other nano-structured materials and devices in various nano & bio technology will be discussed.