AVS 59th Annual International Symposium and Exhibition
    Scanning Probe Microscopy Focus Topic Wednesday Sessions
       Session SP+AS+BI+ET+MI+TF-WeA

Invited Paper SP+AS+BI+ET+MI+TF-WeA1
Electrochemical Strain Microscopy: Nanoscale Imaging of Solid State Ionics

Wednesday, October 31, 2012, 2:00 pm, Room 16

Session: Emerging Instrument Formats
Presenter: S. Jesse, Oak Ridge National Laboratory
Correspondent: Click to Email

Electrochemical reactions in solids underpin multiple applications ranging from electroresistive non-volatile memory and neuromorphic logic devices memories, to chemical sensors and electrochemical gas pumps, to energy storage and conversion systems including metal-air batteries and fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. Traditionally, these effects are studied only on the macroscopically averaged level. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates an electric field in a nanometer scale volume of material, inducing local ion transport. Measured simultaneously, the electromechanical response (piezo response) or current (conductive AFM) provides the information on bias-induced changes in a material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops indistinguishable from those in ferroelectric materials illustrate the role ionic dynamics can play in piezoresponse force microscopy and similar measurements. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. Finally, the future possibilities for probing electrochemical phenomena on in-situ grown surfaces with atomic resolution are discussed. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.