AVS 56th International Symposium & Exhibition | |
Vacuum Technology | Monday Sessions |
Session VT-MoM |
Session: | Vacuum Contamination and Pumping |
Presenter: | C.G. Morgan, XEI Scientific, Inc. |
Authors: | C.G. Morgan, XEI Scientific, Inc. R. Vane, XEI Scientific, Inc. |
Correspondent: | Click to Email |
Data is presented from two experiments with oxygen radicals. Both experiments use a quartz crystal microbalance (QCM). In the first, a silver-coated QCM is placed in the vacuum chamber and subjected to the plasma cleaning process. Oxygen radicals will incorporate themselves into the QCM and increase its mass. The flux of oxygen radicals impinging on the QCM surface can be calculated using the Deal-Grove model of surface oxidation. By locating the silver-coated QCM in different locations of a vacuum chamber, a map of oxygen radical concentrations as a function of distance from the plasma can be made. In the second, a gold-coated QCM is contaminated with hydrocarbons. Test contamination is achieved by heating a small amount of hydrocarbon in a vacuum chamber and allowing the evaporation to recondense on the gold-coated QCM. The cleaning process is then initiated and an experimental trace showing mass loss from the gold-coated QCM as a function of cleaning time is obtained.
A chemical box model which assumes that once the plasma is lit there is a steady-state oxygen radical concentration within each box can be compared to the data from the silver-coated QCM experiments. The chemistry within each box is obtained by using a standard database of gas phase reaction rates. The second model focuses on the gas surface chemistry of decontamination. The results of the second model are compared with the data from the mass loss traces of the gold-coated QCMs. The combination of both models will provide a means to estimate rates of downstream plasma cleaning for any contaminated vacuum system.