AVS 56th International Symposium & Exhibition | |
Thin Film | Tuesday Sessions |
Session TF2-TuM |
Session: | ALD/CVD: Basics, Organics, Electronics |
Presenter: | J. Rivers, The University of Texas at Austin |
Authors: | J. Rivers, The University of Texas at Austin R. Jones, The University of Texas at Austin |
Correspondent: | Click to Email |
Volatile Cobalt group complexes were synthesized as single-source precursors for chemical vapor deposition of amorphous and crystalline metal-phosphide thin films. Phosphide alloys of transition metals are of interest due to their use as barriers against corrosion, electrodes, batteries, catalysts, and as diffusion barrier layers in integrated circuits. Volatile precursors allow use of CVD which is advantageous to other physical methods such as PVD. Precursors were specifically designed and synthesized utilizing ligands which impart volatility such as 3,5-bis(trifluoromethyl)pyrazole and trimethylphosphine. Complexes studied include [Rh((CF3)2-Pz)(PMe3)3], [Co(PMe3)4], [Co((CF3)2-Pz) (PMe3)3], and [Co((CF3)2-Pz)3(PMe3)][CoH(PMe3)4]. The nature of the films depends on reactor conditions such as flow rate, deposition time, substrate temperature, and annealing conditions. Films were grown at temperatures under 400 oC in a hot-wall reactor utilizing dynamic vacuum or Ar as a carrier gas and characterized using XPS, XRD, and SEM.