AVS 56th International Symposium & Exhibition | |
Advanced Surface Engineering | Monday Sessions |
Session SE2-MoM |
Session: | Pulsed Plasmas in Surface Engineering |
Presenter: | S. Schmidt, Linköping University, Sweden |
Authors: | S. Schmidt, Linköping University, Sweden G. Greczynski, Linköping University, Sweden E. Broitman, Carnegie Mellon University L. Hultman, Linköping University, Sweden |
Correspondent: | Click to Email |
The structural and mechanical properties of fullerene-like (FL) and amorphous carbon nitride (CNx) films were deposited using High power pulsed magnetron sputtering (HPPMS) in an industrial CC-800/9 CemeCon chamber and compared with films deposited by DC magnetron sputtering mode of operation.
Films of 1 μm and 2 μm thickness were grown on Si and steel substrates, respectively. Carbon nitride films were deposited via HPPMS from a high purity graphite target in an Ar/N2 discharge at 400 mPa, the N2 fraction varied from 0 to 0.5 and different substrate temperatures ranging from ambient temperature to 300°C were chosen. Furthermore, a novel HPPMS substrate pretreatment employing two HPPMS power supplies was used to optimize the adhesion of the films: the first power supply established the discharge; the second produced a pulsed substrate bias. The created Cr-plasma cleaned the substrate surface and formed a Cr-containing gradual interface into the substrate. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to study the microstructure of both, the films and the interfaces. The hardness and the elastic recovery of the CNx films were measured using nanoindentation. A deposition process window is demonstrated for the growth of dense fullerene-like (FL) film structures consisting of curved, frequently intersecting, and highly in-plane oriented basal planes.