Invited Paper 2D+EM+NS+PS+SP+SS+TF-MoM10
Atomically-Thin 2D Layers of Group IV Semiconductors
Monday, October 19, 2015, 11:20 am, Room 212C
Similar to how carbon networks can be sculpted into low-dimensional allotropes such as fullerenes, nanotubes, and graphene with fundamentally different properties, it is possible to create similar “allotropes” of Ge or Sn with unique optoelectronic properties as well. Here, we will describe our recent success in the creation of hydrogen and organic-terminated group 14 graphane analogues, from the topochemical deintercalation of precursor Zintl phases, such as CaGe2. We will discuss how the optical, electronic, and thermal properties of these materials can be systematically controlled by substituting either the surface ligand or via alloying with other Group 14 elements. Additionally, we have also developed an epitopotaxial approach for integrating precise thicknesses of Germanane layers onto Ge wafers that combines the epitaxial deposition of CaGe2 precursor phases with the topotactic interconversion into the 2D material. Finally, we will describe our recent efforts on the synthesis and crystal structures of Sn-containing graphane alloys in order to access novel topological phenomena predicted to occur in these graphanes.