AVS 61st International Symposium & Exhibition
    Scanning Probe Microscopy Focus Topic Wednesday Sessions
       Session SP+AS+BI+NS+SS-WeA

Paper SP+AS+BI+NS+SS-WeA9
Controlling Charges of the Dipole Layer at Metal-Semiconductor Interfaces

Wednesday, November 12, 2014, 5:00 pm, Room 312

Session: Advances in Scanning Probe Microscopy
Presenter: Tae-Hwan Kim, Pohang University of Science and Technology, Republic of Korea
Authors: T.-H. Kim, Pohang University of Science and Technology, Republic of Korea
H.W. Yeom, Pohang University of Science and Technology and Institute for Basic Science, Republic of Korea
Correspondent: Click to Email

Metal-semiconductor interfaces have drawn a lot of interest in the field of semiconductor surface and interface science, and have been one of the most essential parts in semiconductor electronic and optoelectronic devices. For example, the Schottky-barrier height experimentally observed at the metal-semiconductor interface appears to be nearly independent of the work function of the metal. Since the time of Bardeen, interface gap states seem to have been a primary mechanism of the Schottky-barrier height causing Fermi level pinning at metal-semiconductor interfaces. Recently, polarized chemical bonds at metal-semiconductor interfaces have been recognised to lead to the apparent Fermi level pinning effect. When these interface bonds are formed underneath thin metal islands grown on a silicon substrate, a spontaneous charge transfer across the semiconductor-metal interfaces occurs as a result of the difference in the Fermi level positions between the metal and the semiconductor. These polarized chemical bonds can form a dipole layer. This dipole layer can play an important role in many areas of technology, for instance, in organic light emitting diodes. However, some of the fundamental aspects of the charge injection process into/from the interface dipole layer at the Schottky contact are yet not explored in any real detail.

In this work, we report the use of scanning tunneling microscopy (STM) to form a double-barrier tunneling junction (DBTJ) with thin metallic nanoislands grown on Si(111) and to control charges of the interface dipole layer formed between the metallic nanoislands and the Si(111) substrate. Reversible hysteric switchings in their I−V and differential conductance spectra are observed due to the charging and discharging of the interface dipole layer in a similar fashion to molecular DBTJs. STM images clearly visualize the distinct charge states and scanning tunneling spectroscopy (STS) spectra reveal that quantum well states (QWSs) of the ultrathin islands act as the charging/discharging channels in analogy to the molecular orbitals in the case of the molecular DBTJs. This work demonstrates that the charges of the interface dipole layer at the nanoscale Schottky contact can be controlled by the electron transfer via the QWSs of the metallic islands.