AVS 60th International Symposium and Exhibition
    Manufacturing Science and Technology Tuesday Sessions
       Session MS+AS+EL+EM+PS+TF-TuA

Invited Paper MS+AS+EL+EM+PS+TF-TuA1
Alphabet-Based Template Design Rules - A Key Enabler for a Manufacturable DSA Technology

Tuesday, October 29, 2013, 2:00 pm, Room 202 B

Session: Manufacturing Challenges of Nanoscale Patterning
Presenter: H. Yi, Stanford University
Authors: H. Yi, Stanford University
H-.S.P. Wong, Stanford University
Correspondent: Click to Email

Block copolymer DSA is a result of spontaneous microphase separation of block copolymer films, forming periodic microdomains including cylinders, spheres, and lamellae. Among all the various self-assembled structures, cylinder patterns have attracted specific interest due to their great potential in patterning electrical contacts in Integrated Circuits (ICs). Due to the random distribution of electrical contacts in layouts as well as the continuous scaling of IC circuits, patterning contacts has become increasingly challenging for traditional optical lithography. Due to the advantage of low cost and sub-20 nm feature sizes, block copolymer directed self-assembly (DSA) is a promising candidate for next generation device fabrication.

Traditionally, the study of DSA has been focused on achieving long range order and a periodic pattern in large area. Chemoepitaxy approaches including using chemical patterns of preferential affinity on the substrate surface or controlling pattern formations by tuning annealing conditions have been investigated and developed. They can improve the long range order self-assembly quality and lower the defect density over large areas. In order to use DSA to pattern the randomly distributed contacts in IC layouts, we adopt physical (topographical) templates to form irregularly distributed cylindrical patterns. Topographical templates use strong physical confinements in lateral directions to alter the natural symmetry of block copolymer and guide the formation of DSA patterns. Previously we have demonstrated that for the first time the self-assembled features can be almost arbitrarily placed as required by circuit fabrication and not limited to regular patterns, by combining templates of different types on one wafer. These various templates are akin to the letters of an alphabet and these letters can be composed to form the desired contact hole patterns for circuit layouts. The capability of arbitrary placement is demonstrated in industry-relevant circuits such as static-random-access-memory (SRAM) cells and standard logic gate libraries at a dimension that is the state-of-the-art semiconductor technology today [1]. To enable introduction of DSA into manufacturing we developed a general template design strategy that relates the DSA material properties to the target technology node requirements. This design strategy is experimentally demonstrated for DSA contact hole patterning for half adders at the 14 nm and 10 nm nodes [2].

Reference:

[1] H. Yi et al. Adv. Mater, 2012.

[2] H. Yi et al. SPIE, 2013.