AVS 58th Annual International Symposium and Exhibition
    Spectroscopic Ellipsometry Focus Topic Thursday Sessions
       Session EL+AS+EM+MS+PS+TF-ThM

Invited Paper EL+AS+EM+MS+PS+TF-ThM1
Application of Various Spectroscopic Ellipsometry Techniques for In Situ Studies of Thin Polymer Films on Solid Substrates

Thursday, November 3, 2011, 8:00 am, Room 209

Session: Spectroscopic Ellipsometry of Biological Materials and Organic Films
Presenter: Klaus-Jochen Eichhorn, Leibniz-Institut für Polymerforschung Dresden e.V., Germany
Correspondent: Click to Email

Thin films of functional polymers are not only widely integrated into modern micro- and nanoelectronic devices, but also used to modify solid surfaces for biosensor, biomedical and antifouling applications.
Therefore, in the first part I will report on improved temperature-dependent spectroscopic Vis-ellipsometry experiments to study confinement effects on the polymer dynamics in thin films to address a question which is controversially discussed in the polymer physics community for a long time past: Is there really a significant change of the glass transition temperature Tg of polymers when confined in nanoscopic films (studied here down to about 10 nm thickness)? We compared well-known linear polystyrenes of different molecular weights /1/ and hyperbranched polyesters having different architectures and functional groups /2/. Films of different thickness were prepared by spin-coating on silicon wafers, carefully equilibrated and measured in dependence on temperature (up to 250°C) in an inert gas atmosphere. The Tg data were determined from the ellipsometric results and discussed.
In the second part, “smart” surfaces will be presented which can be used for controlled adsorption and release of biomolecules. For that, different types of stimuli-responsive polymer brushes were prepared on solid substrates by a “grafting-to” procedure. The brush properties (e.g. swelling/collapsing) as well as the resulting adsorption/desorption of model proteins (e.g. Human Serum Albumin, Chymotrypsin) can be switched in an appropriate aqueous medium with temperature (PNIPAAM) and/or pH (PAA-P2VP). The corresponding processes at the solid-liquid interface were studied in-situ by spectroscopic Vis- and IR-ellipsometry /3,4/.
/1/ M. Tress, M. Erber, E.U. Mapesa, H. Huth, J. Müller, A. Serghei, C. Schick, K.-J. Eichhorn, B. Voit, F. Kremer, Macromolecules43 (2010), 9937-9944
/2/ M. Erber, A. Khalyavina, K.-J. Eichhorn, B. Voit, Polymer51 (2010), 129-135
/3/ E. Bittrich, M. Kuntzsch, K.-J. Eichhorn, P. Uhlmann, J. Polym. Sci. B, Polym. Phys.48 (2010), 1606-1615
/4/ Y. Mikhailova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, K. Hinrichs, Anal. Chem.79 (2007)20, 7676-7682