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2:20pm TL+AS+SS+TF-TuA1 Interface Science and Engineering for Energy-
Water Systems, Seth Darling, Argonne National Laboratory INVITED 

Driven by climate change, population growth, development, urbanization, 
and other factors, water crises represent the greatest global risk in the 
coming decades. Advances in materials represent a powerful tool to 
address many of these challenges. Understanding—and ultimately 
controlling—interfaces between materials and water are pivotal [1]. In this 
presentation, we will lay out the challenges and present several examples 
based on materials science strategies for addressing applications in water. 
In each instance, manipulation of interfacial properties provides novel 
functionality, ranging from selective transport to energy transduction to 
pollution mitigation. 

[1] J. Appl. Phys. 124 (2018) 030901 

3:00pm TL+AS+SS+TF-TuA3 Atomic Dynamics of Noble Metal Surface in 
Gases Revealed by Time Resolved Environmental Transmission Electron 
Microscopy, Seiji Takeda, N. Kamiuchi, R. Aso, H. Yoshida, T. Tamaoka, 
Osaka University, Japan INVITED 

The surface of noble metals in gas has been extensively studied in the field 
of surface science. The surface has been investigated in both ultra high 
vacuum and various gases of high pressure and under various stimuli, for 
instance the illumination of intense light, the electric and/or magnetic field 
and the irradiation of charged particles. A microscopy study is potentially 
useful to provide us with the imaging data on the surface in real space and 
time at the resolution that is available in a microscopy apparatus to use. 
Among various methodologies for microscopy, atomic resolution 
environmental transmission electron microscopy has advanced greatly in 
the time resolution recently, allowing us to explore the dynamic surface 
and to elucidate the mechanism of the dynamic phenomena that are 
related to various energy transition processes. We show recent our studies, 
including the self-activated surface dynamics of gold catalysts in reaction 
environments [1] and the unexpected gas (nitrogen) -solid (palladium) 
transition [2] that is occurring on the surface under a strong electrostatic 
field. We demonstrate that the surface dynamics that is associated with the 
energy transition processes needs to be visualized at atomic scale for 
understanding the electronic excitations behind the surface dynamics. 
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4:20pm TL+AS+SS+TF-TuA7 Totally Organic and Organic-Inorganic Hybrid 
Batteries, Burak Esat1, Fatih University, Turkey, Rutgers University; S. 
Bahceci, S. Akay, Fatih University, Turkey; A. Momchilov, Bulgarian 
Academy of Science, Bulgaria 

We hereby represent novel polymers and reduced graphene oxide with 
pendant electro-active groups such as TEMPO and quinones. 

The first example of polymers with pendant anode-active groups studied in 
our group is a polymethacrylate derivative carrying anthraquinone moieties 
(pMAntrq). This anthraquinone based anode-active material has proven to 
show a quite good reversible electrochemical reduction behavior in both 
aqueous and non-aqueous electrolytes in our studies. pMAntrq|1M LiClO4 
in EC:DEC=1:1|Li battery system has been constructed. The initial discharge 
capacity of the cell obtained was 151 mAh/g when cycled between 4.2 and 
1.2V at 0.25C rate and 79.2 mAh/g when cycled between 4.0 and 1.5V at 
0.3C rate during subsequent cycles. 

This material was also used in an aqueous battery, pMAntrq |5M KOH 
aq.|LiMn2O4 . Although an initial discharge capacity of 37.7 mAh/g was 
obtained, it deteriorated quickly due to the solubility of the reduced form 
of the polymer in this electrolyte system. This is the first reported example 
of such organic-inorganic hybrid battery. 

                                                                                 
1 Scholar Rescue Fund Fellow 

An anode material based on reduced graphene oxide (RGO) functionalized 
with anthraquinone is also investigated and a battery against Li metal 
revealed a quite reversible capacity of 200 mAh/g based on the weight of 
electro-active anthraquinone moieties when cycled between 3.2 and 1.8 V 
at 0.3C rate. The energy density was found to be around 450 mWh/g. 

We have also synthesized and characterized polyacetylene polymers with 
pendant TEMPO radicals which are electrochemically oxidizable in a 
reversible manner at around 3.5-3.6V vs. Li. These materials have been 
proven to be cathode-active materials for rechargeable batteries. We have 
demonstrated that a mixture of Tempo radical polymer with LiMn2O4 (1:1) 
can be used as a hybrid cathode material. Typically, this polymer may be 
expected to act as a polymeric electro-active binder and a stability 
improver for the inorganic cathode-active material. 

Studies toward construction of all organic batteries using these anode and 
cathode materials are currently in progress. 

4:40pm TL+AS+SS+TF-TuA8 Electrochemical Strategies for Designing 
Interfaces of Battery Materials, Betar Gallant, Massachusetts Institute of 
Technology INVITED 

Future generations of energy-storage devices require advances beyond 
state-of-the-art materials and redox systems. Rechargeable batteries, 
specifically today’s Li-ion batteries, have largely been dominated by 
transition metal oxide cathodes; advanced conversion systems with higher 
theoretical energy densities, such as Li-S and Li-O2, have received 
significant attention as “beyond Li-ion” batteries, but have their own 
challenges and limitations. Looking at the periodic table invites one to 
wonder, “Is there more beyond sulfur and O2?” This talk will focus on 
challenges and opportunities related to a different chemical family: 
fluorine, or more specifically, active fluoride. Fluoride-containing additives, 
electrolytes, solid electrolyte interphases (SEI), and intercalation materials 
represent a recurring motif in many proposed next-generation battery 
chemistries, but current understanding of the behavior of fluorinated 
interfaces and materials remains largely phenomenological. In addition, 
controlling the incorporation of fluoride into materials still remains a major 
challenge owing to safety issues of fluorine and the intransigence of 
fluoride-containing precursors, hindering design in this space. 

In this talk, I describe our group’s exploration of several applications where 
fluoride-forming reactions can be harnessed and tailored for benefit in 
advanced batteries. First, I describe our efforts to develop high-energy 
density redox systems based on the electrochemical reduction of 
fluorinated gases. We show that fundamental knowledge and the 
experimental framework developed in the field of Li-O2batteries in recent 
years can be successfully translated to the development of new gas-to-solid 
conversion reactions with high energy densities. Next, I will discuss the 
opportunities presented by the ability to generate fluoride in situ in 
working batteries from these reactions, creating new possibilities to 
fluorinate interfaces in tailorable and precise ways. I will present our 
findings relevant to two examples where fluoride has been suggested to 
play a critical and enabling role: Li anode interfaces, and oxyfluoride-based 
intercalation cathodes. Using our gas-based fluoridation architecture, we 
explore the fundamental role that fluoride plays in each of these 
applications. Finally, I will highlight future challenges and opportunities in 
the characterization of fluoridated materials. 
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