8:20am MN-MoM1 Terahertz Optomechanical Meta-atoms, Yanko Todorov, Université de Paris, France

The THz spectral domain (1-20 THz) has numerous applications in spectroscopy, gas sensing, security screening, and imaging, and is even seen as the next frontier for wireless communications [1, 2]. Compact and powerful sources of THz radiation, such as quantum cascade lasers are now available, and they deliver more than 10mW in continuous wave, even if they are constrained to operate at cryogenic temperatures (< 50 K). On the other hand, the detection in the THz domain is a notoriously difficult problem, owing to the large photon wavelengths involved. Indeed, neither of the existing commercial THz detectors, such as bolometers or Golay cells, are altogether sensitive, fast and room temperature [3]. These issues can be tackled by adopting completely novel approaches for the electromagnetic confinement in the detector, inspired from the recent progress of electromagnetic metamaterials [4]. In this approach, engineered metamaterial resonators are used to provide highly subwavelength confinement of the electromagnetic field, and direct THz photons into detector absorbers with high efficiency.

I will report on a THz metamaterial resonator that is upgraded with a mechanical element, enabling a nanoscale optomechanical coupling. This system has two mechanisms of operation: photo-thermal, based on the THz Eddy currents induced in the resonator, and an electro-mechanical coupling, that exploits the highly sub-wavelength confinement in the resonator. Both these approaches allow detection at room temperature with high speed, with sensitivities that can potentially reach those of commercial semiconductor bolometers operating at cryogenic temperatures [5]. More recently, we have demonstrated an all-metallic meta-atom where the optomechanical coupling is substantially mediated by a conservative Coulomb force due to charge oscillations in the nanometric-size capacitive part of the structure [6]. Such system paves the way for the realization of coherent THz to optical transducers and allows the realization of fundamental optomechanical systems in the THz frequency range.

References:
Mon, 21 Oct 2019 10:00am

MN-MoM6 Impacts of Stress and Dissipation in van der Waals Interfaces on 2D Material Nanoelectromechanical Systems, SunPhil Kim, A.M. van der Zande, University of Illinois at Urbana-Champaign

Two-dimensional materials such as graphene and MoS₂ represent the ultimate limit of both nanoelectronic and nanoelectromechanical systems due to their intrinsic molecular scale thickness. While 2D materials exhibit many useful properties, many of the most exciting phenomena and applications arise at the van der Waals interface. Electrically, the van der Waals interface enables the constructing of heteroestructures and molecular scale electronics. Mechanically, the van der Waals interface displays superlubricity[1] or solitons[2] depending on whether the interface is aligned. A fascinating question is how the van der Waals interface affects the mechanical properties of 2D membranes. Answering this question is important for incorporating 2D heterostructure electronics into diverse applications such as highly tunable nanoelectromechanical systems from suspended 2D membranes, stretchable electronics from crumpled 2D materials, and origami/kirigami nano-machines.

In this study, we explore the impact of the van der Waals interface by comparing mechanical resonance of electrostatically contacted circular drumhead resonators made from atomic membranes of monolayer graphene to commensurate (Bernal stacked) bilayers, incommensurate (twisted) bilayer, and graphene-MoS₂heterostructures (2D bimorph).

For Bernal stacked bilayer, we observe the creation and destruction of individual solitons manifesting as stochastic jumps in the mechanical resonance frequency tuning. We find individual dislocation creation and destruction of single solitons lead to shifts in membrane stress of < 7 mN/μm² or in-plane slip shifts of 0.7 Å. We observe similar jumps in the few layer graphene and heterostructure, but not in the twisted bilayer.

For twisted bilayer, temperature and amplitude dependent studies reveal that the resonators show a factor of 3 higher dissipation rate, leading to different nonlinear behaviors compared to monolayer graphene and Bernal stacked bilayer resonators.

These results show that van der Waals interfaces strongly affect stress and dissipation of many multilayer 2D atomic membranes; an important consideration in engineering 2D nanomechanical devices.


10:40am

MN-MoM8 Nanomechanical Sensing for the Life Sciences, Montserrat Calleja, IMN-CSIC, Spain

INVIITED

Physical and, among them, mechanical properties of biological entities as cells, bacteria, viruses and biomolecules are valuable cues to better understand human diseases. Still, this has remained an underexplored route for the development of novel biosensing and diagnostic strategies. Biosensors based on nanomechanical systems are best suited to respond to the demand for accurate physical characterization of biologics, biomolecules and single cells. The continuous downsampling of such devices from micro- to nano-scale is providing a drastic improvement in their mass resolution, while the robustness of nanomechanical biosensors for high throughput immunodetection has reached the demands of clinical applications. Interestingly, other physical parameters than the added mass of the biological targets are at reach for nanomechanical systems. We have recently observed that thin films of DNA demonstrate a Young’s modulus tuning range of about 10 GPa, by simply varying the environment relative humidity from 0% up to 70%. While upon hybridization with the complementary strand, the DNA self-assembled monolayers significantly soften by one order of magnitude. Thus, we have demonstrated direct detection without prior purification or amplification of DNA sequences for gene-based identification of pathogens and antibiotic resistances. Also, the mass, position and stiffness of analytes arriving the resonator can be extracted from the adsorption-induced eigenfrequency jumps. We have proposed that this approach serves for identification of large biological complexes near their native conformation, a goal that is beyond the capabilities of conventional mass spectrometers. The capability to describe the analytes that arrive to the resonator by two orthogonal coordinates, the mass and the stiffness, clearly enhances the selectivity of nanomechanical spectrometry and it opens the door to relevant biomedical applications, as now the important role of mechanical properties in biological processes and in pathogenic disorders is becoming increasingly clear. In this talk, several avenues to advance nanoresonators for multiparameter fingerprinting of single proteins, cells, viruses and bacteria will be reviewed.

11:20am

MN-MoM10 Neutral Mass Spectrometry of Metallic Nanoparticles with Optomechanical Resonators, Marc Sansa, M. Defoort, M. Hermouet, L. Banniard, A. Fafin, M. Gely, Université Grenoble Alpes, CEA, LETI, France; I. Favero, Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, France; G. Jourdan, Université Grenoble Alpes, CEA, LETI, France; A. Brenac, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, INAC-Spiotec, France; S. Hentz, Université Grenoble Alpes, CEA, LETI, France

Nanomechanical resonators have shown record performance in mass or force sensing thanks to their miniature sizes. Pioneering works have shown single protein mass spectrometry (MS) could be performed with nanoresonators (1). It was recently demonstrated that they are particularly well suited for the analysis of high-mass species like virus capsids (~100MDa), out of reach for any commercial instrument as of today (2). In parallel, cavity-based nano-optomechanical resonators have shown exceptional displacement sensitivities (3), opening new avenues to improve the limit of detection of nanomechanical sensors (4). Here we report the first proof of concept of mass spectrometry with a nano-optomechanical resonator, made possible by a novel resonator geometry, the combination of optomechanics with electrical actuation and advances in fabrication and assembly of the sensor.

Taking advantage of the optomechanical detection, we use an ultra-thin planar sensor geometry. It displays several advantages compared to commonly used 1D-like resonators: the capture area is increased threefold while maintaining a similar mass resolution. Additionally, this planar membrane resonator is designed to be insensitive to particle position, shape or stiffness, avoiding the need for multi-mode operation (5). The resonators are fabricated using the first very large scale integration process for optomechanics, which allows the combination of standard photonics components (grating couplers, waveguides, optical cavities), electrical actuation of the resonator and a protection layer covering the optical and electrical features.

Our process and design also allow optical packaging in order for our sensor to be portable and usable in any vacuum system with optical and electrical input/outputs, such as a sputtering system containing a standard time-of-flight (TOF) mass spectrometer (6). This setup allows the generation of particles of controllable mass, and the comparison of optomechanical and TOF mass spectrometry in situ. We show that the measured mass is equivalent with both techniques, while optomechanical detection is more performant at higher masses (>5 MDa), where TOF becomes less efficient. This work represents the first step towards the optomechanical addressing of large sensor arrays, which combine the advantages of nanomechanical sensors with reduced analysis times comparable to those of conventional MS.

in the case of nanomechanical resonators due to limited precision (c.a. 5 to 10nm). Moreover, the issue becomes way more acute when using arrays of resonators [3]: in this case, effective mass uncertainty and variability within the array leads to shifts in central mass, but also changes in mass profile. Lastly, routine particle measurements demand frequent changes in devices and time-effective calibration techniques are required. This crucial issue for mass spectrometry applications is very little discussed in the literature, or is addressed with complex procedures [4]. FEM simulations show that two main parameters impact effective mass assessment in the case of our monocrystalline silicon resonators (160nm thickness, 300nm width and c.a. 10um long): width and residual plane stress. The resonance frequencies of all resonators in the array are measured, thus both deviation from the theoretical frequency spacing and absolute frequency of our 20 resonators in the array are used for calibration of effective mass. A two-step optimization routine is used in conjunction with a physical model and internal stress and beam width are deduced. With this method an extremely low absolute mass error (<1%) is demonstrated to be reached. This non-destructive technique based on electrical measurement is amenable to the future use of very large arrays (>1000 resonators) for very short analysis time. This method can be extended for non-destructive characterization of nanomechanical resonators for different applications.

Author Index

Bold page numbers indicate presenter

A —
Ahmed, Z.: MN-MoM3, 1

B —
Banniard, L.: MN-MoM10, 2
Brenac, A.: MN-MoM10, 2

C —
Calleja, M.: MN-MoM8, 2
Clement, K.: MN-MoM11, 2
Cumberland, L.T.: MN-MoM3, 1

D —
Defoort, M.: MN-MoM10, 2; MN-MoM11, 2

F —
Fafin, A.: MN-MoM10, 2
Favero, I.: MN-MoM10, 2
Fitzgerald, R.: MN-MoM3, 1
Fowlkes, J.D.: MN-MoM4, 1

G —
Gely, M.: MN-MoM10, 2; MN-MoM11, 2

H —
Han, S.M.: MN-MoM5, 1
Heileman, G.: MN-MoM5, 1
Henry, M.D.: MN-MoM5, 1
Hentz, S.: MN-MoM10, 2; MN-MoM11, 2
Hermouet, M.: MN-MoM10, 2
Hu, Z.: MN-MoM4, 1
Idrobo, J.C.: MN-MoM4, 1
Jourdan, G.: MN-MoM10, 2
Klimov, N.N.: MN-MoM3, 1
Lai, SH.: MN-MoM11, 2
Masiello, D.: MN-MoM4, 1

Masselon, C.: MN-MoM11, 2
Mutunga, E.: MN-MoM4, 1

P —
Pakeltis, G.: MN-MoM4, 1

Plank, H.: MN-MoM4, 1

R —
Rack, P.D.: MN-MoM4, 1
Rummel, B.D.: MN-MoM5, 1

Sansa, M.: MN-MoM10, 2; MN-MoM11, 2

Todorov, Y.: MN-MoM1, 1
Tosh, R.E.: MN-MoM3, 1

V —
vander Zande, A.M.: MN-MoM6, 2

Vysotskyi, B.: MN-MoM11, 2