Thursday Afternoon, October 24, 2019

Frontiers of New Light Sources Applied to Materials, Interfaces, and Processing Focus Topic Room A210 - Session LS+AC+HC+SS-ThA

Emerging Methods with New Coherent Light Sources

 $\label{eq:model} \mbox{ Moderator: Germán Rafael Castro, Spanich CRG BM25-SpLine Beamline at the ESRF }$

4:00pm LS+AC+HC+SS-ThA6 Resolving X-ray Based Spectroscopies in the Sub-nanometer Regime: Enabling Atomic Scale Insights into CO Adsorption on Thin Film Surfaces, *Heath Kersell, B. Eren, C.H. Wu,* Lawrence Berkeley National Laboratory; *I. Waluyo, A. Hunt,* Brookhaven National Laboratory; *G.A. Somorjai, M.B. Salmeron,* Lawrence Berkeley National Laboratory

X-ray based spectroscopies routinely yield detailed elemental, chemical, electronic, and magnetic information on a wide array of physically and chemically diverse samples. However, the spatial resolution of these techniques is limited, frequently by the size of the X-ray spot. Conversely, certain structural probes readily resolve sample topography with nanoscale- or even atomic-resolution. The union of X-ray based spectroscopies with nanoscale structural probes enables the acquisition of spectroscopic information at unprecedented length scales. We will demonstrate the combination of X-ray based spectroscopies (e.g. X-ray photoelectron spectroscopy {XPS}) with scanning tunneling microscopy (STM), and its application to CO adsorption and oxidation on model catalyst surfaces.

CO adsorption on various crystal surfaces plays a critical role in numerous chemical processes, including for example CO oxidation, the water gas shift reaction, and methanol oxidation. CO oxidation is widely used as a prototype reaction for studies of fundamental catalytic phenomena and is crucial in exhaust gas processing for automobiles and stationary CO sources. Recent studies demonstrate strikingly high activity for CO oxidation by Pt nanoparticles supported on cobalt oxide (CoO_x) as compared to either of the constituent materials. In the further development of these catalysts, a deeper understanding of the active sites and their deactivation is crucial. Using a combination of operando high pressure STM (HP-STM) and ambient pressure XPS (AP-XPS), we investigate the nature of catalytically active sites for CO oxidation on CoO-Pt catalysts at CO and O₂ pressures up to 130 mTorr. Our experiments showed very different behavior for the lattice oxygen (O_{lat--}) in CoO between fully oxidized and sub-stoichiometric cobalt oxides. At RT, fully oxidized Co films adsorbed CO in the form of stable surface carbonate species, poisoning the reaction until reaching higher temperatures where they decomposed. On sub-stoichiometric CoO_x the CO oxidation reaction proceeded at RT, reducing the oxide to the metallic state. We discuss these results in the context of structural transformations observed in-situ- via HP-STM, and demonstrate the behavior of surface sites under relevant gas mixtures.

As an outlook, we will discuss various *in-situ* multi-modal approaches which enhance the spatial resolution of X-ray based spectroscopies toward the nano- or even single atom scales. Such a union of spectroscopic and structural probes will provide a more accurate and complete picture of operating devices in the near future.

4:20pm LS+AC+HC+SS-ThA7 Imaging with XPS: Advanced Characterization for Advanced Materials and Devices, *Tatyana Bendikov*, *H. Kaslasi*, *E. Sanders*, *E. Joselevich*, *D. Cahen*, Weizmann Institute of Science, Israel

X-ray Photoelectron Spectroscopy (XPS), as a surface sensitive technique with the sensitivity down to single atomic layer, provides unique information about elemental composition and chemical and electronic states of elements in the material. For some research goals, however, this knowledge is not sufficient as it does not provide the entire information required for a comprehensive characterization of the investigated system. In addition to the basic functions of standard XPS, our instrument is equipped with advanced capabilities such as XPS imaging, which is particularly valuable in the analysis of patterned or inhomogeneus specimens. Following image acquisition, specific areas can thus be chosen and small spot XP spectra acquired at sites of particular interest. This information is useful in the characterization of patterned surfaces or inhomogeneous samples with surface features between several to hundreds of micrometers.

We present here two examples where XPS imaging is successfully used providing crucial information for understanding the investigated systems. In the first example bunches of GaN nanowires (50-100 nm each) randomly spread on Si substrate were monitored with XPS imaging. Then, focusing on the GaN bunch itself, small area XP spectra were obtained. This allowed to get precise top surface composition of the bunches significantly consuming the analysis time.

In the second example variations in chemical composition though dimensions of the $Cs_xMa_{1-x}PbBr_3$ (MA = CH₃NH₃)

crystal were studied using XPS imaging. Significant changes in the N/Cs ratio, depending on the distance from the crystal edge/center, were observed on the top surface. Variations in the N/Cs and Pb/(N+Cs) ratios were also observed along the crystal bulk.

4:40pm LS+AC+HC+SS-ThA8 Time-Resolved Photoemission with Free-Electron Lasers, Kai Rossnaael, CAU Kiel / DESY, Germany INVITED Photoelectron spectroscopy is an essential analytical tool for learning about the properties and workings of quantum materials and functional interfaces, in which electrons are the main actors. In practice, photoelectron spectroscopy is a toolbox comprising three major techniques, where the momentum selectivity and atomic-site specificity of valence and core electron emissions are exploited, respectively: Angleresolved photoelectron spectroscopy (ARPES) is the most powerful imaging technique for the energy-momentum space of the active electrons near the Fermi level, while x-ray photoelectron spectroscopy (XPS) is a universal tool for chemical analysis and x-ray photoelectron diffraction (XPD) an established surface structural probe. A dream is to combine all three techniques into a single experiment, make it complete by adding spin and femtosecond time resolution, and thus be able to shoot femtostroboscopic movies of intertwined electronic, magnetic, chemical, and geometric structure dynamics and gain previously unachievable, direct "in operando" insight into dynamic structure-function relationships of materials and interfaces. Here, we aim to realize this dream by combining the soft x-ray SASE3 free-electron-laser (FEL) beam at the European XFEL with the most advanced photoelectron detection scheme currently available: the time-of-flight momentum microscope with efficient 3D energy-momentum detection and 2D spin filtering. The status of the project and of FEL-based photoelectron spectroscopy in general will be presented.

5:20pm LS+AC+HC+SS-ThA10 Ultrafast Magnetization Dynamics on the Nanoscale, Bastian Pfau, Max Born Institute, Germany INVITED Nanometer-scale spin configurations are attractive as information entities for spintronic applications to realize nonvolatile and energy-efficient data storage and processing. In recent years, this research field was stimulated by the discovery that the spin can be effectively manipulated using ultrashort light pulses exciting suitably designed magnetic materials. Scattering and imaging methods based on sources delivering ultra-short x-ray pulses are particularly successful in revealing the magnetization dynamics on the relevant time and length scales. I will present research results on optically induced demagnetization and formation of nanoscale magnetic domains and skyrmions in Co-based multilayer systems. We investigate these processes using small-angle scattering signals or direct imaging via holography with femtosecond x-ray pulses delivered by free-electron laser sources. These methods additionally allow to address the influence of lateral nanoscale inhomogeneity and to work with laterally localized or structured excitation.

Author Index

- B -Bendikov, T.: LS+AC+HC+SS-ThA7, 1 - C -Cahen, D.: LS+AC+HC+SS-ThA7, 1 - E -Eren, B.: LS+AC+HC+SS-ThA6, 1 - H -Hunt, A.: LS+AC+HC+SS-ThA6, 1

Bold page numbers indicate presenter - J --Joselevich, E.: LS+AC+HC+SS-ThA7, 1 - K --Kaslasi, H.: LS+AC+HC+SS-ThA7, 1 Kersell, H.: LS+AC+HC+SS-ThA6, 1 - P --Pfau, B.: LS+AC+HC+SS-ThA10, 1 - R --Rossnagel, K.: LS+AC+HC+SS-ThA8, 1

- S -Salmeron, M.B.: LS+AC+HC+SS-ThA6, 1 Sanders, E.: LS+AC+HC+SS-ThA7, 1 Somorjai, G.A.: LS+AC+HC+SS-ThA6, 1 - W -

Waluyo, I.: LS+AC+HC+SS-ThA6, 1 Wu, C.H.: LS+AC+HC+SS-ThA6, 1