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Exotic Nanostructured Surfaces for Heterogeneously-
Catalyzed Reactions 
Moderators: Ashleigh Baber, James Madison University, Erin Iski, 
University of Tulsa 

8:20am HC+2D+SS-WeM2 Selective Alkane Chemistry on IrO2(110) 
Surfaces, Aravind Asthagiri, M. Kim, The Ohio State University; J.F. 
Weaver, University of Florida 

Selective conversion of alkanes to higher value species using 
heterogeneous catalysts is of great interest with the increasing availability 
of light alkanes from shale fracking. We have used a combination of 
temperature programmed reaction spectroscopy (TPRS) and density 
functional theory (DFT) to demonstrate that the stoichiometric terminated 
IrO2(110) surface can activate methane and ethane below room 
temperatures, and furthermore, that this surface can be selective towards 
ethane dehydrogenation to ethylene. For ethane, DFT shows that 
adsorption and initial C-H bond cleavage to surface bound C2H4* is facile 
and the selectivity step occurs between further C-H bond breaking leading 
to complete oxidation versus ethylene desorption. The reactivity of this 
surface is mediated by the presence of undercoordinated Ir (Ircus) and 
adjacent bridge O atoms (Obr). Using the combination of TPRS and DFT we 
find that pre-hydrogenating the IrO2(110) surface results in the formation 
of HObr sites that increases the selectivity towards ethylene by increasing 
the barrier to C-H bond cleavage for C2H4* and decreasing the desorption 
energy of C2H4*. We will discuss efforts to use DFT and microkinetic 
modeling to explore doping strategies of both the Ircus and Obr sites to 
promote selectivity towards ethylene formation. 

8:40am HC+2D+SS-WeM3 Design of Nanostructured Catalysts for Better 
Performance, Francisco Zaera, University of California, Riverside INVITED 

One of the major challenges in heterogeneous catalysis is the preparation 
of highly selective and robust catalysts. The goal is to be able to synthesize 
solids with stable surfaces containing a large number of specific surface 
sites designed for the promotion of a particular reaction. New synergies 
between surface-science studies and novel nanosynthesis methodology 
promise to afford new ways to design such highly selective catalysts in a 
controlled way. In this presentation we will provide a progress report on a 
couple of projects ongoing in our laboratory based on this approach. 
Platinum-based catalysts have been prepared for the selective trans-to-cis 
conversion of olefins, with a design based on early surface-science work 
with model surfaces and quantum mechanical calculations that indicated a 
particular preference for (111) facets in promoting the formation of the cis 
isomers. We are currently extending this research by using the concept of 
"single-site catalysis" with Pt-Cu bimetallics for the selective hydrogenation 
of unsaturated aldehydes. In a second example, new metal@TiO2 yolk-shell 
nanomaterials conceived for both regular and photo-induced catalytic 
applications have been used to promote CO oxidation at cryogenic 
temperatures and to suggest that in photocatalysis the role of the metal 
may not be to scavenge the excited electrons produced in the 
semiconductor upon absorption of light, as commonly believed, but rather 
to promote the recombination of the adsorbed atomic hydrogen initially 
produced by reduction of H+ on the surface of that semiconductor. New 
mixed-oxide surfaces are being designed using atomic layer deposition 
(ALD) as well. 

9:20am HC+2D+SS-WeM5 Characterization of a Pd/Ag(111) Single Atom 
Alloy Surface Using CO as a Probing Molecule for H2 Dissociation, Mark 
Muir, M. Trenary, University of Illinois at Chicago 

Tuning catalysts for selective hydrogenation reactions is ultimately 
determined by the nature of the active site for H2 dissociation and the 
adsorption of atomic hydrogen on the surface. Several single atom alloys 
(SAAs) consisting of small amounts of Pd deposited onto surfaces of metals 
that do not activate H2 dissociation, such as Cu(111) and Au(111), have 
been previously studied. In the present study, we characterize Pd/Ag(111), 
a possible new single atom alloy surface using reflection absorption 
infrared spectroscopy (RAIRS) of adsorbed CO as a probe. From 0.01 to 0.04 
ML Pd/Ag(111), a ν(CO) stretching peak was seen at 2050 cm-1 
corresponding to CO adsorbed on palladium atoms at the on-top site, 
indicating a single atom alloy surface. By increasing the palladium coverage 

to approximately 0.05 ML and above, a second ν(CO) stretching peak was 
seen at 1950 cm-1 corresponding to CO adsorbed on a palladium bridge site, 
indicating palladium dimer formation. The surface palladium coverage was 
determined using temperature programmed desorption (TPD) of CO and 
Auger electron spectroscopy (AES). By annealing these surfaces to 500 K, 
the palladium atoms diffuse into the subsurface, and a ν(CO) stretching 
peak at 2150 cm-1 (CO adsorbed on silver atoms) is greatly enhanced in 
intensity due to subsurface palladium. The subsurface to surface palladium 
ratios on the single atom alloy surfaces were varied from capped 
Ag/Pd/Ag(111), to a 50:50 ratio, to approximately a 60:40 ratio. The ability 
of subsurface palladium on the Pd/Ag(111) SAA surfaces to facilitate 
hydrogen dissociation was explored using H2 and D2 TPD. 

9:40am HC+2D+SS-WeM6 Propyne Hydrogenation over a Pd/Cu(111) 
Single Atom Alloy Catalyst Studied with Infrared Spectroscopy, 
Mohammed Abdel-Rahman, M. Trenary, University of Illinois at Chicago 

The hydrogenation of propyne (C3H4) to propylene (C3H6) using a 
Pd/Cu(111) single atom alloy (SAA) has been studied using polarization 
dependent-reflection absorption infrared spectroscopy. This method allows 
for simultaneous monitoring of reactants and products in the gas-phase 
and species adsorbed on the surface during the reaction. The results were 
compared with the hydrogenation of propyne using Pd-free Cu(111) as well 
as previous studies on Pd/Cu SAA alumina-supported metal catalysts. 
Propylene production first occurs at 383 K as indicated by the presence of 
an infrared peak at 912 cm -1, which is a uniquely characteristic of gas-
phase propylene. The presence of propyne oligomers on the surface is 
indicated by a dramatic increase in the peak intensity at 2968 cm -1 at 
temperatures above 400 K. The progression of the peaks at 912 and 3322 
cm-1 was used to calculate the rate of production of propylene and the rate 
of consumption of propyne, respectively. This reaction rate was used to 
determine a turnover frequency (TOF) for the reaction on the Pd/Cu SAA 
catalyst. 

11:00am HC+2D+SS-WeM10 “Single-Atom” Catalysis: How Structure 
Influences Reactivity, Gareth S. Parkinson, TU Wien, Austria INVITED 

The field of „single-atom” catalysis (SAC) [1-2] emerged as the ultimate 
limit of attempts to minimize the amount of prescious metal used in 
heterogeneous catalysis. Over time, it has become clear that metal 
adatoms behave differently to supported nanoparticles [3-4], primarily 
because they form chemical bonds with the support and become charged. 
In this sense, SAC systems resemble the mononuclear coordination 
complexes used in homogeneous catalysis, and there is much excitement 
that SAC could achieve similar levels of selectivity, and even heterogenize 
problematic reactions currently performed in solution. It is important to 
note, however, that homogeneous catalysts are designed for purpose 
based on well-understood structure-function relationships, but the 
complexity of real SAC systems means that the structure of the active site is 
difficult to determine, never mind design. In this talk, I will describe how 
we are using precisely-defined model supports [5] to unravel the 
fundamentals of SAC. I will show a selection of our latest results in this 
area, including scanning probe microscopy, x-ray photoelectron 
spectroscopy (XPS) and temperature programmed desorption (TPD) data to 
show how the local structure of Ir1/Fe3O4(001) and Rh1/Fe3O4(001) single 
atom catalysts changes based on preparation and adsorption of reactants, 
and how the structures obtained can be rationalised by analogy to Ir(I) and 
Ir(IV) complexes, respectively. If time permits, I will also show that CO 
oxidation activity in the Pt1/Fe3O4(001) system is promoted by water. 

[1] Qiao, B., et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. 
Nature Chemistry 3 (2011) 634-41. 

[2] Liu, J., Catalysis by supported single metal atoms. ACS Catalysis 7 (2016) 
34-59. 

[3] Gates, B.C., et al., Atomically dispersed supported metal catalysts: 
perspectives and suggestions for future research. Catalysis Science & 
Technology 7 (2017) 4259-4275. 

[4] Parkinson GS, Catalysis Letters 149 (2019), 1137-1146 

[5] Bliem, R., et al., Subsurface cation vacancy stabilization of the magnetite 
(001) surface. Science, 346 (2014) 1215-8. 

11:40am HC+2D+SS-WeM12 Oxidation Reactions on Rh(111), Marie 
Turano, G. Hildebrandt, Loyola University Chicago; R.G. Farber, The 
University of Chicago; D.R. Killelea, Loyola University Chicago 

The uptake and subsequent surface structures of oxygen on transition 
metal surfaces reveal much about the reactivity of the metal catalyst. On 
clean Rh(111) at room temperatures in ultra high vacuum (UHV), oxygen 
molecules (O2) readily dissociate into two adsorbed oxygen atoms, 
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asymptotically approaching a saturation coverage of 0.5 monolayers (ML, 1 
ML= 1.5×1015 O atoms cm-2). However, exposing Rh(111) to gas-phase 
oxygen atoms (atomic oxygen, AO) generated by thermally cracking 
molecular oxygen over a hot Ir filament, allows for higher oxygen 
coverages. In addition, oxygen not only adsorbs to the surface, but it may 
also penetrate into the subsurface region of the crystal. After atomic 
oxygen exposures at elevated temperatures, the Rh(111) surface is covered 
in a combination of oxides, adsorbed surface oxygen, and subsurface 
oxygen (Osub). The coexistence of a variety of structures allows for the 
determination of which species is reactive to the oxidation of carbon 
monoxide (CO) on highly oxidized Rh(111) surfaces. Using scanning 
tunneling microscopy (STM), we have determined that CO oxidation occurs 
mainly at the interface between the metallic and oxidic surface phases on 
Rh(111) where the Osub, upon emergence from the bulk, replenishes the 
surface oxygen. Once Osub is depleted, CO consumes the oxide and the 
surface quickly degrades into the (2×2)-O+CO adlayer. 

12:00pm HC+2D+SS-WeM13 Adsorption and Motion of Atomic Oxygen on 
the Surface and Subsurface of Ag(111) and Ag(110), S.B. Isbill, C.J. Mize, 
L.D. Crosby, Sharani Roy, University of Tennessee Knoxville 

Silver surfaces act as important industrial catalysts for the partial oxidation 
of ethylene to ethylene oxide and methane to methanol. While significant 
strides have been taken towards understanding the mechanism of 
heterogeneous catalytic oxidation by silver, the role of subsurface oxygen 
in such catalysis has yet to be elucidated. Subsurface oxygen is adsorbed 
just beneath the surface of the metal and is believed to play an important 
role in surface reconstruction and oxidation catalysis. In the present study, 
density functional theory (DFT) was used to study the interactions of 
atomic oxygen with the surface and subsurface of the Ag(111) and Ag(110) 
surfaces. The goal was to investigate the adsorption of atomic oxygen at 
different coverages and examine its effects on the structural and catalytic 
properties of silver. Our study of O/Ag(111) showed that adsorption of 
atomic oxygen was strong at low coverage but became weaker with an 
increase in coverage, much more so for surface oxygen than for subsurface 
oxygen. Therefore, at higher and industrially relevant oxygen coverages, 
oxygen preferred to bind to the subsurface than to the surface. In contrast, 
atomic oxygen bound more strongly to the surface than to the subsurface 
at all studied coverages. Based on the results from DFT, we constructed 
analytic models for adsorption in O/Ag(111) and O/Ag(110) as well as 
performed kinetic Monte Carlo simulations to explain the differences in 
coverage dependence of surface adsorption versus subsurface adsorption 
on the two surfaces. The results provide qualitative insight on why surface 
and subsurface oxygen might have qualitatively different effects on the 
electronic, geometric, and catalytic properties of silver. 
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