AVS 66th International Symposium & Exhibition
    Energy Transition Focus Topic Monday Sessions
       Session TL+2D+HC+SS-MoA

Invited Paper TL+2D+HC+SS-MoA3
Single-Atom Alloy Catalysts: Born in a Vacuum, Tested in Reactors, and Understood In Silico

Monday, October 21, 2019, 2:20 pm, Room A212

Session: Surface Reaction Mechanisms in Energy Conversion (ALL INVITED SESSION)
Presenter: Charles Sykes, Tufts University
Correspondent: Click to Email

In this talk I will discuss a new class of metallic alloy catalysts called Single Atom Alloys in which precious, reactive metals are utilized at the ultimate limit of efficiency.1-5 These catalysts were discovered by combining atomic-scale scanning probes with more traditional approaches to study surface-catalyzed chemical reactions. This research provided links between the atomic scale surface structure and reactivity which are key to understanding and ultimately controlling important catalytic processes. Over the last five years the concepts derived from our surface science and theoretical calculations have been used to design Single Atom Alloy nanoparticle catalysts that can perform industrially relevant reactions at realistic reaction conditions in collaboration with Maria Flytzani-Stephanopoulos at Tufts. For example, alloying elements like platinum and palladium with cheaper, less reactive host metals like copper enables 1) dramatic cost savings in catalyst manufacture, 2) more selective chemical reactions, 3) reduced susceptibility to CO poisoning, and 4) higher resistance to deactivation by coking. I go on to describe very recent theory work by collaborators Stamatakis and Michaelides at UCL that predicts reactivity trends of 16 different Single Atom Alloy combinations for important reaction steps like activation of H-H, C-H, N-H, O-H and C=O bonds. This project illustrates that the field of surface science is now at the point where it plays a critical role in the design of new heterogeneous catalysts.

References:

[1] Kyriakou et al. Science 335, 1209 (2012).

[2] Marcinkowski et al. Nature Materials 12, 523 (2013).

[3] Lucci et al. Nature Communications 6, 8550 (2015).

[4] Liu et al. JACS 138, 6396 (2016).

[5] Marcinkowski et al. Nature Chemistry 10, 325 (2018).