AVS 66th International Symposium & Exhibition | |
Electronic Materials and Photonics Division | Monday Sessions |
Session EM+PS+TF-MoA |
Session: | New Devices and Materials for Logic and Memory |
Presenter: | Saima Siddiqui, MIT |
Authors: | S. Siddiqui, MIT S. Dutta, MIT A. Tang, MIT L. Liu, MIT M. Baldo, MIT C. Ross, MIT |
Correspondent: | Click to Email |
Domain walls’ motion in a magnetic wire is a function of applied current due to spin-orbit torque from an adjacent heavy metal (Fig. 1). The current density and spin orbit torque can be modified along the wire by adjusting the width of the heavy metal. The spin orbit torque then becomes a function of the domain wall position, which makes the domain wall motion a nonlinear function of the applied current (Fig. 2). Linear and nonlinear domain wall motion can be detected via magnetoresistance by using a magnetic tunnel junction in which the magnetic wire forms the free layer. The electrical detection is necessary for the analog matrix multiplication in neuromorphic accelerator. However, domain walls are pinned due to the magnetostatic energy minima on the sides of the MTJ. The synaptic (Fig. 3) and activation function (Fig 4) like magnetoresistive behavior can still be generated by using multiple MTJs in parallel. In this study, we demonstrate linear and nonlinear domain wall motion in magnetic wires and modify the design of magnetic tunnel junctions to convert these motions into magnetoresistance. The experimental observations of the device characteristics agree with both analytical and micromagnetic modeling.
[1] J. A. Currivan-Incorvia, S. Siddiqui, S. Dutta, E. R. Evarts, J. Zhang, D. Bono, C. A. Ross, and M. A. Baldo, Nat Commun., 7, 10275 (2016).
[2] Stuart S. P. Parkin, Masamitsu Hayashi, and Luc Thomas, Science, Vol. 320, Issue 5873, pp. 190-194 (2008)
[3] Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles & Julie Grollier, Nature volume 547, pp. 428–431 (2017).