Monday Morning, October 22, 2018

Tribology Focus Topic Room 201A - Session TR+AS+NS+SS-MoM

Tribology Focus Session

Moderators: Mehmet Z. Baykara, University of California, Merced, Prathima Nalam, University at Buffalo - SUNY

8:20am TR+AS+NS+SS-MoM1 Structural Superlubricity: History, Breakthroughs, and Challenges, Mehmet Z. Baykara, University of California, Merced INVITED

The idea of *structural superlubricity* holds immense potential for the realization of nearly frictionless sliding in mechanical systems, with implications for fields as diverse as environmental conservation and space travel. The basic principle of structural superlubricity involves the proposition that friction should diminish at an interface formed by atomically-flat and molecularly-clean crystalline surfaces with different lattice parameters and/or incommensurate orientation. Despite the rather straightforward character of its basic principle, the realization of structural superlubricity under ambient conditions has been challenging due to the requirement of molecular cleanliness at the interface.

In this talk, we will first briefly review three decades of structural superlubricity research by emphasizing important milestones and breakthroughs. Subsequently, we will present results of nano-manipulation experiments from our lab, which demonstrate the remarkable occurrence of structural superlubricity for gold and platinum nano-islands sliding on graphite under ambient conditions. Complementary to the experiments, results of ab initio calculations will be discussed, which (i) reveal that the noble metal-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally superlubric sliding under ambient conditions, and (ii) confirm the experimental observation of larger friction forces for platinum, attributable to higher energy barriers encountered during sliding. The experiments additionally demonstrate that the scaling power between friction force and contact size is independent of the chemical identity of the sliding atoms, but is determined by the geometric qualities of the interface. The talk will conclude with a review of remaining challenges for structural superlubricity, in particular those involving size- and deformation-related limits.

9:00am TR+AS+NS+SS-MoM3 An Examination of the Nature of Bonding during Indentation and Sliding using MD and in-situ Nanoindentation, Judith Harrison, United States Naval Academy INVITED

Adhesion between DLC tips and diamond counterfaces was examined using a nanoindentor coupled to TEM and molecular dynamics (MD). Additional MD simulations of sliding contact between the same tip-substrate materials were also carried out. Strong interactions between the surfaces in vacuum led to gradual nanoscale wear of the DLC. Force-separation curves show an approximate correlation between pull-off force and applied load for various contact points, while pull-in force was fairly constant for all contact points and independent of applied load. MD simulations were designed to replicate experiment as closely as possible and used the AIREBO and the REBO+S potentials. DLC tips with the same general shape (which often deviated from the assumed paraboloidal tip geometry due to wear) were brought into contact with diamond surfaces. MD results demonstrate that pull-off force is correlated with bonds formed during contact, providing an explanation of the trends observed in the TEM data. The effects of contact point and hydrogen-termination on pull-off forces and the nature of bond formation during sliding as a function of speed and hydrogen termination will be presented. The results of similar experiments and MD simulations using Si tips in contact with diamond counterfaces of adhesion and sliding using the ReaxFF potential will also be discussed.

9:40am TR+AS+NS+SS-MoM5 The Chemistry of Friction, Wear, and Tribofilm Growth on 2D Materials, Jonathan Felts, Texas A&M University INVITED

The evolution of a sliding interface between two objects is difficult to theorize, predict, and measure due to the complexity of the interface, which is often described phenomenologically. Here we utilized a nanometer sized single asperity of an atomic force microscope tip sliding against atomically flat graphene and graphene oxide to study the origins of friction, wear, and tribofilm growth phenomena at the atomic scale. We hypothesize that all of the observed contact phenomena at the macroscale can be described using fundamental thermochemistry. At low applied tip loads, the friction of graphene oxide is non-monotonic with tip velocity, initially increasing for speeds from 100 - 10,000 nm/s, followed by a *Monday Morning, October 22, 2018*

decrease and a subsequent increase above 50,000 nm/s. At sufficiently high applied loads, we observe wear of oxygen groups from graphene oxide at temperatures between 50-400 °C and loads between 10-700 nN, and find an exponential increase in wear rate with applied load. For the case of an electrically biased tip oxidizing pristine graphene, the oxidation rate somewhat paradoxically increases with applied load, despite previously observed enhancement in wear rate with load. All of the above observations can be understood in the context of mechanically driven thermochemical reactions. The friction behavior depends on two competing factors-aging of the sliding contact due to chemical bonding between tip and substrate, and hopping of unbonded tip atoms between graphene lattice sites. Atomic wear of graphene oxide is well described by the tilted potential energy surface theory of mechanically driven chemistry, which predicts a non-linear reduction in the energy barrier with applied load. We further show that the tilted potential energy surface model also well describes the enhancement of oxidation rate. The work presented here creates a foundation for describing the mechanics of sliding contacts as chemical processes, and further paves the way towards quantitatively understanding how mechanical force drives chemical reactions in general.

10:40am TR+AS+NS+SS-MoM8 Nanomechanics of Soft, Hierarchical Polymer- and Biological-Networks, Prathima Nalam, University at Buffalo -SUNY INVITED

Soft networks based on synthetic polymer chains or biological filaments, with architecture that are anisotropic or hierarchical in nature, offer a path towards the development of tough and reliable flexible structures. These structures find applications in numerous areas including healthcare delivery, environmental purification systems, energy storage systems, flexible electronics, and tribology. Further, the ability of these networks to present a wide range of tunable functional properties, through alterations in the chemical structure of the monomers, synthesis or operational conditions, etc., which otherwise is rarely possible with other hard materials, promise the development of smart materials. In this study, we present the nanomechanical and nanotribological behavior of two stimuliresponsive networks consisting of (a) polyelectrolyte films with a thin layer of chitosan (CH) grafted on top of poly (acrylic acid) (PAA) brushes (CH/PAA) and (b) naturally grown mycelium-based networks. The CH/PAA network is a synthetic hierarchical structure, in which each layer exhibits a strong structural change with variation in solution pH. On the other hand, Mycelium is a soft biological network (derived from mushrooms) composed of multicellular or unicellular filaments, known as hyphae, with anisotropic micro-architecture.

A detailed investigation of the depth-dependent elastic moduli on these networks is conducted using atomic force microscope (AFM, Oxford Instruments) to study the impact of local structural heterogeneity of the network on its mechanical properties. A colloid-attached AFM cantilever was employed to study the surface interactions and to indent the material in the linear elastic deformation regime. The study of the impact of the network structure on the material rigidity, measured at both nano- and macro- scales, has enabled to probe the validity of affine network deformation theories for hierarchical networks. With this understanding, the design and development of antibacterial platforms (with CH/PAA platforms) and water-filtration membranes (with mycelium networks) using hierarchical soft structures is discussed.

11:20am TR+AS+NS+SS-MoM10 Mechanisms for Controlling Friction and New Approaches for Achieving Superlubricity Regime in 2D Materials, Diana Berman, University of North Texas; A. Erdemir, A.V. Sumant, Argonne National Laboratory INVITED

Friction is an important aspect of many areas of everyday life. Varieties in mechanical systems from nano to macroscale and efforts to minimize energy losses intersect with challenges of controlling the friction. The popularity of recently discovered 2D materials and their usefulness for multiple applications enabled understanding the friction at a more fundamental level and opened new routes for manipulating friction to superlubricity or near zero friction values.

Here, we review the basic mechanisms that complies the frictional energy dissipation, such as wear, molecular deformation, thermal effect, electronic effect, bonding, environment and chemistry, phonons, and structural effect. We present the case studies highlighting how these mechanisms are controlled in 2D materials. Finally, we highlight recent advances in implementing 2D materials for friction reduction to superlubricity across scales from nano- up to macroscale contacts. We show that nanoscale superlubricity mechanisms originating from the formation of frictionless nanoscale systems, as in case of graphene-nanodiamond scrolls and carbon

Monday Morning, October 22, 2018

nanoonion structures, can be successfully transferred to macroscale effects. Development of 2D materials opened a new pathway for manipulating friction, which makes superlubric friction today's reality.

References:

[1] D. Berman, et al., Approaches for Achieving Superlubricity in Two-Dimensional Materials, ACS Nano (2018)

[2] D. Berman, et al., special issue in Diamond and Related Materials, 54, 91 (2015).

[3] D. Berman, et al., Materials Today 17 (2014) 31-42.

[4] D. Berman, et al., Science, 348 (2015) 1118-1122

Author Index

Bold page numbers indicate presenter

- B -Baykara, M.Z.: TR+AS+NS+SS-MoM1, 1 Berman, D.: TR+AS+NS+SS-MoM10, 1 - E -Erdemir, A.: TR+AS+NS+SS-MoM10, 1 — F — Felts, J.R.: TR+AS+NS+SS-MoM5, **1** — H — Harrison, J.A.: TR+AS+NS+SS-MoM3, **1** — N — Nalam, P.: TR+AS+NS+SS-MoM8, **1** — S — Sumant, A.V.: TR+AS+NS+SS-MoM10, 1