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2:20pm SS+AS+BI+MI+NS-ThA1 Investigation of the Stability of Ag 
Monolayers on Au(111) as a Function of Metal Adatom Diffusion, J.A. 
Phillips, L.K. Harville, H.R. Morgan, L.E. Jackson, G. LeBlanc, Erin Iski, 
University of Tulsa 

The formation of an atomically thin, Ag layer on a Au(111) surface has been 
shown to significantly alter the thermal properties of the underlying 

substrate (1). A further exploration into the chemical mechanisms by which 
these thin films are deposited reveals two different sources of Ag during 

the formation of the monolayer. Electrochemical Scanning Tunneling 
Microscopy (EC-STM) and Cyclic Voltammetry (CV) are used to probe the 

in-situ interfaces of these metal systems as well as the adsorption of 
molecules on metals. EC-STM is a unique technique that, in addition to 

providing a local probe of the atomic surface structure, also functions as a 
3-electrode cell in which redox chemistry can be performed to understand 

the chemical reactivity of the surface. Also, cyclic voltammograms (CVs) can 
be generated to provide specific information regarding the nature of the 
redox events occurring at the surface. The two sources of silver used for 

the Underpotential Deposition (UPD) process on Au(111) result in 
significantly different thermal stabilities of the surface. An important 

question is whether this stability can extend beyond thermal properties, 
which will be probed using the assembly of amino acids on Ag/Au(111). 
Using both EC-STM and UHV-STM (ultra-high vacuum STM), it has been 

shown that amino acids assist in the immobilization of diffusing adatoms 
on the surface and in the subsequent formation of metal islands (2). Since 
the molecular deposition in both cases takes place at room temperature, 
the current understanding is that the atoms on the surface are a function 

of the temperature of the surface and are not pulled out of the surface 
itself. Importantly, these systems provide a unique glimpse into metal 

surface diffusion and offer the ability to study the mass transport of metal 
atoms. This study focuses on how an application of the thin Ag film on the 
Au(111) will disrupt or assist in the metal adatom transport and whether 
the known thermal stability can extend to other surface properties, thus 
making the afforded stability more general. The interaction of the amino 
acids with the Ag films deposited at the two different potentials and the 

associated mass transport as measured by the size of metal islands on the 
surface will shed light on the stabilities of the two types of Ag layers. The 

ability to experimentally choose different surface properties based on 
electrochemical parameters and solution composition during metal 

deposition could lead to exciting new directions for thin film technologies. 

(1) Iski et al. Electrochimica Acta (2011), 56, 1652-1661. 

(2) Iski et al. submitted to Communication Chemistry, May 2018. 

2:40pm SS+AS+BI+MI+NS-ThA2 Chain-Length Dependent Reactivity of 
Thiolate Self-Assembled Monolayers with Atomic Gas Species, Jeffrey 
Sayler, S. Brown, S.J. Sibener, University of Chicago 

Thiolate self-assembled monolayers (SAMs) provide platforms for easily 
customizable organic interfaces, making them an excellent model system 
for studying the chemical properties of organic thin films. In particular, 
their reactions with atomic gas species such as hydrogen and oxygen yield 
important information about gas-surface interactions in organic films, how 
static and dynamic disorder influence passivation, as well as various 
hydrogenation and oxidation reactions. We are currently investigating the 
reactions of these SAMs with atomic hydrogen (H), using an angle-directed 
atomic gas source and in situ ultra-high vacuum scanning tunneling 
microscopy (UHV-STM). First, a series of alkanethiolate SAM samples of 
varying chain length (8 to 11 carbon atoms long) were reacted with H, 
resulting in the monolayers’ conversion from close-packed standing-up 
phase to lower density lying-down phase. Regardless of chain length or 
even-/oddness, which were expected to impact the effectiveness of H 
penetration into the monolayer due to differences in the chains’ lateral 
mobility and terminal structure, all samples exhibited common kinetic 
mechanistic details. The relative reaction rates of different chain lengths 
were obtained using simultaneous dosing of multiple samples. Second, a 
close-packed 1H,1H,2H,2H-perfluorodecanethiol SAM (a fluorinated analog 
of the 1-decanethiol SAM) was reacted with H. Dosing this sample under 
the same conditions as the 1-decanethiol sample revealed little to no 
reactivity. Ongoing studies continue to explore the reactivity of this family 

of saturated SAM systems including investigation of the kinetics and 
mechanism of the lying-down phase’s reactivity with H. Further 
investigations involving atomic oxygen and different SAM chemical 
compositions and structures will follow. 

3:00pm SS+AS+BI+MI+NS-ThA3 Scan Probe Studies of Lithium Transfer 
through Solid State Electrochemical Interfaces, Janice Reutt-Robey, 
University of Maryland College Park INVITED 

All solid-state electrical energy storage devices are of immense interest as 
safer alternatives to those based upon flammable liquid electrolytes. 

Understanding the rates and elementary processes for lithium ion transport 
through anode-solid electrolyte-cathode interfaces is essential, but 

obscured by heterogeneous samples and unknown local potentials. I will 
present new nanoscale studies of lithiation/delithiation across well-defined 
interfaces created with actuated nanobattery junctions. Conventional STM 
metallic tips, clad with a thin film of electrode material (LiCoO2 or Li) and a 
capping film of solid electrolyte (LixAl2O3 or Li20), function as ½ cells. Probes 
are positioned and electrochemically cycled at singular surfaces of model 

electrodes – Si(111), Si(100), C(0001). At the nanoscale, hysteresis in 
charging/discharging is monitored as a function of interface structure and 

materials properties. UHV measurements preserve the chemical integrity of 
the material interfaces and allow traditional (cyclic voltammetry, stepped 

potential) and nontraditional (stepped stress) electrochemical 
measurements to separate electron/ion contributions to charge transfer. 

The data reveal how induced variations in local lithium concentration 
impact rates for charging/discharging and contribute to hysteretic 

behavior. Further, stress-induced current transients show non-Cotrellian 
time behavior, attributed to a lithium ion concentration gradient in the solid 
electrolyte. Modeling of nanobattery data allows for testable predictions of 

material properties. Finally we show how "inverted" Scanning Tunneling 
Spectroscopy provides a useful tool to characterize the electrical band gap 
of the tip 1/2 cell materials, while imaging reveals the distribution pattern 

of lithium ions at the cycled electrode surfaces. 

This work was supported as part of the Nanostructures for Electrical Energy 
Storage (NEES), an Energy Frontier Research Center funded by the U.S. 

Department of Energy, Office of Science, Basic Energy Sciences under Award 
number DESC0001160. 

4:00pm SS+AS+BI+MI+NS-ThA6 Adsorption and Self-assembly of 
Halogenated Organic Molecules on the Si(111) √3×√3-Ag Surface, Renjie 
Liu, Lakehead University, Canada; C. Fu, A.G. Moisseev, M.R. Rao, Y. Chen, 
D.F. Perepichka, McGill University, Canada; M.C. Gallagher, Lakehead 
University, Canada 

Given potential applications in molecular electronics, organic thin films 
continue to attract a great deal of scientific attention. Furthermore, 
organic-inorganic semiconductor hybrids have been identified as a possible 
platform for future devices. Generally such a device would require thin 
films of functionalized organic molecules grown on silicon surfaces. To 
promote the growth of high quality films, the Si surface needs to be 
passivated. For example, the Si(111) √3×√3-Ag surface has been shown to 
be weakly interacting, allowing molecules to remain mobile and form well 
ordered layers [1]. 

In this work we compare the adsorption and self-assembly of two 
halogenated molecules of threefold symmetry; 2,4,6-tris(4-iodophenyl)-
1,3,5-triazine (TIPT), and tribromotrioxaazatriangulene (TBTANG) on the 
Si(111)-√3×√3-Ag surface. The self assembly of TIPT on HOPG and Au(111) 
has been reported previously [2], and heteroatom forms of triangulene are 
of particular interest in molecular electronics [3]. 

We find that both molecules display high mobility on the √3-Ag surface. 
With increasing molecular dose, TIPT forms supramolecular domains 
defined by a 2.0 nm by 1.8 nm rectangular cell. The size and symmetry of 
the unit cell provides strong evidence that a large fraction of the 
monomers do not undergo de-halogenation, and that the dominant 
interaction within the domains is intermolecular I···H hydrogen-bonding. As 
the coverage approaches one monolayer, the film consists of 
supramolecular domains of limited extent separated by regions of disorder. 
STM images at lower coverage reveal that molecular adsorption increases 
the defect density of the underlying √3-Ag layer. We believe that a small 
fraction of the TIPT molecules de-iodinate on adsorption and that the 
iodine subsequently reacts with the Ag overlayer. The increased defect 
density limits the extent of the supramolecular domains on this surface. 

In contrast, TBTANG exhibits long-range self-assembly of intact molecules. 
The ordered structure is characterized by several closely packed rows of 
molecules. Within the rows the repeating motif is two-molecules linked 
together by Br···Br interactions. With increasing coverage, the √3 surface 
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remains unaffected and the self assembled layer extends over the entire 
surface. 

[1] Yokoyama, T. et al., J Chem Phys 142, 204701 (2015). 

[2] Gatti, R. et al., J. Phys. Chem. C 118, 25505–25516 (2014). 

[3] Nakatsuka, S. et al., Angewandte Chemie 129, 5169–5172 (2017). 

 
 

4:20pm SS+AS+BI+MI+NS-ThA7 Electron Interactions with Alkanethiol 
Self-assembled Monolayers on Au(111), Jodi Grzeskowiak, University at 
Albany-SUNY; C.A. Ventrice, Jr., SUNY Polytechnic Institute 

Self-assembled monolayers (SAMs) are often used for applications such as 
molecular electronics, selective deposition, and various forms of surface 
modification. Advanced lithography within the semiconductor industry is 
adopting ever shorter wavelengths of light such that the interaction of 
secondary electrons with the organic resist is becoming the primary 
mechanism for photo-initiated electro-chemical solubility changing 
reactions. In order to study the interaction of low energy electrons with 
thin organic films, measurements have been performed on electron 
decomposition of alkanethiol molecules grown on Au(111) substrates. 
SAMs have been grown via both solution and vapor phase methods. These 
monolayers arrange into two distinct phases commonly referred to as lying 
down and standing up. The lying down phase is a physisorbed layer that is 
only weakly interacting with the substrate via Van der Waals forces. 
Conversely, the standing up phase is a chemisorbed species that is more 
strongly bound to the substrate. Various surface analysis techniques were 
used to characterize the monolayers before and after electron exposure. 
Low energy electron diffraction (LEED) was used to determine the structure 
of the SAM and the rate of decomposition. Temperature programmed 
desorption (TPD) in combination with mass spectrometry was used to 
evaluate the thermal stability and bonding strength of the attached SAMs 
and the decomposition products from electron exposure. 

4:40pm SS+AS+BI+MI+NS-ThA8 Measuring the Electronic Properties of 
Organic Single Crystals, Sujitra Pookpanratana, E.G. Bittle, C.A. Hacker, 
S.W. Robey, National Institute of Standards and Technology (NIST); R. 
Ovsyannikov, E. Giangrisostomi, Helmholtz-Zentrum Berlin, Germany 

Organic and molecular-based compounds have found commercial 
application in consumer-based electronics. Organic semiconductors can be 
integrated onto device structures in different physical forms such as single 
crystals, polycrystalline thin-films, or amorphous thin-films. The structural 
order of the molecular solid profoundly influences the electronic 
properties, that in turn controls important properties, such as the transport 
gap and binding energy of the highest occupied molecular orbital (HOMO) 
[1, 2], that govern how an electronic device operates. Photoemission can 
play a vital role in illuminating these important electronic properties. While 
there are numerous photoemission spectroscopic measurements of 
organic semiconductors in thin-film structures, far fewer attempts have 
been made to determine the “fundamental” electronic properties for 
pristine organic single crystals. 

Here, we present results of photoemission measurements for single 
crystalline (SC) dinaphthothienothiophene (DNTT). DNTT is a small 
molecule-based thienoacene and has demonstrated carrier mobilities 
approaching 10 cm2/(V s) [3], is air-stable [4] and durable against 
accelerated temperatures and humidity conditions.[5] While there are 
many device studies that establish DNTT and other related thienoacenes 
for a variety of applications, detailed electronic and chemical structure 
studies are lacking. Electronic “band” structure measurements using a 
novel angle-resolved time-of-flight electron spectrometer is performed on 
SC-DNTT, and multiple highest occupied molecular orbitals are resolved of 
varying widths. Modest dispersion of the frontier HOMO is observed, and 
this result will be discussed in context of the charge carrier behavior of 
DNTT reported in the literature. 

[1] J. Ivanco et al., Adv. Mater. 15, 1812 (2003) 

[2] S. Krause et al., Org. Electron. 14, 584 (2013) 

[3] W. Xie et al., Adv. Mater. 25, 3478 (2013) 

[4] U. Zschieschang et al., Adv. Mater. 22, 982 (2010) 

[5] N. K. Za’aba et al., Org. Electron. 45, 174 (2017) 

5:00pm SS+AS+BI+MI+NS-ThA9 Surface Functionalization of Porous 
Substrates via Initiated Chemical Vapor Deposition, Christine Cheng, M. 
Gupta, University of Southern California 

Porous materials are used in various applications including separation 
membranes, paper-based microfluidics, and flexible electronics. Tuning 

surface properties of porous materials enhances the versatility of existing 
materials, giving them new functions and applications. However, traditional 
surface modification methods are typically solvent-based, which limits the 

range of substrates that can be coated. In this work, initiated chemical 
vapor deposition was used to continuously modify the surface of large 

areas of porous substrates in an all-dry vacuum process. A 
superhydrophobic polymer was deposited onto a porous substrate and the 

coating was characterized using contact angle goniometry, X-ray 
photoelectron spectroscopy, and scanning electron microscopy to study 

the uniformity of the coating along the entirety of the substrate. The 
superhyodrophobicty of the coated porous substrate is attributed to the 

deposited polymer and the roughness of the substrate. Addition of a 
perfluorinated liquid to the superhydrophobic porous substrate formed a 

slippery liquid-infused porous surface. A hydrophilic polymer was 
deposited on top of the superhydrophobic polymer to demonstrate the 

facile stacking of polymer layers with different chemistries using this 
process. 

5:20pm SS+AS+BI+MI+NS-ThA10 Atomic-Scale Understanding of Anatase 
Nanocatalyst Activation, William DeBenedetti1, E.S. Skibinski, M.A. Hines, 
Cornell University 

Our ability to predict the chemical reactivity of nanocatalysts has been 
stymied by our lack of atomic-scale understanding of nanocatalyst surface 
structure. Specifically, do nanocatalyst surfaces adopt a bulk-terminated 
structure or do they reconstruct to minimize their surface free energy, 

thereby lowering their chemical reactivity as observed in ultra-high 
vacuum? Furthermore, do nanocatalysts processed at higher temperature 
maintain their low-chemical-reactivity, reconstructed surfaces when used 

at low temperatures and under typical operating conditions? 

Using a new technique for the growth of highly aligned anatase (001) 
nanocatalysts, we will show that solution-synthesized anatase is 

terminated by a monolayer of fluorine, which acts as an atomic-scale 
protective coating against adventitious contamination. We will also show 

that carboxylic acid solutions, the most common TiO2 functionalization 
chemistry, causes a spontaneous reorganization of a reconstructed 

nanocatalyst, leading to a five-fold increase in the number of reactive sites. 
This surface reorganization is not observed when carboxylic acids are dosed 

from the gas phase, indicating that experiments in ultra-high vacuum 
environments lead to trapped states that may not be relevant to 

nanocatalysts in ambient conditions. Ab initio calculations show that 
although the carboxylic acid termination is slightly less effective at 

removing surface stress than the reconstructed surface, it is more effective 
in lowering the surface free energy. These findings suggest that bulk-

terminated metal oxide nanocatalysts may be common under ambient 
operating environments, even after high-temperature processing or if 

reactants are rinsed off. 

5:40pm SS+AS+BI+MI+NS-ThA11 Mechanistic view of Solid-Electrolyte 
Interphase Layer Evolution at Li-metal Anode, Venkateshkumar 
Prabhakaran, Physical Sciences Division, Pacific Northwest National 
Laboratory; M.H. Engelhard, A. Martinez, Environmental Molecular Science 
Laboratory, Pacific Northwest National Laboratory; G.E. Johnson, Physical 
Sciences Division, Pacific Northwest National Laboratory; S. Thevuthasan, 
Environmental Molecular Science Laboratory, Pacific Northwest National 
Laboratory; V. Murugesan, Physical Sciences Division, Pacific Northwest 
National Laboratory 

A molecular-level understanding of structural and chemical 
transformations of electrolyte at solid-electrolyte interfaces (SEI) is critical 
for rational design of electrochemical materials. Despite numerous studies, 
evolution of the transient and metastable species which dictates the 
cascade of interfacial reactions are still not clear. The challenge is to 
establish the chemical homogeneity within interface to clearly delineate 
the origin of various decomposition reaction products and their energetic 
pathways. Soft landing of mass-selected ions is ideally suited for building 
the interface with selected constituent which can alleviate the complexity 
associated with diverse and correlated processes within SEI layer.1-4 Herein, 
we report the development and first demonstration of new capabilities 
that combine ion soft landing with operando infrared reflection-absorption 

                                                                                 
1 National Student Award Finalist 
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spectroscopy (IRRAS) to study the decomposition of counter anions and 
solvent molecules on bare lithium metal surfaces. Specifically, we discreetly 
deposited sulfonyl imide based electrolyte anion (TFSI-) and solvated 
Lithium cations without corresponding counter ions onto bare lithium 
metal using soft landing approach and monitored their decomposition 
using in-situ IRRAS and ex-situ x-ray photoelectron spectroscopy (XPS). 
Operando IRRAS and XPS measurements captured the signatures of 
transient species arising from decomposition of electrolyte anions and 
solvent molecules in real time. We will discuss, our unique approach of 
building interface with precise control over the constituents and 
subsequently detect the spectroscopic signatures of transient species 
during decomposition processes. 

References:  

1. Johnson, G. E.; Hu, Q.; Laskin, J., Soft landing of complex molecules on 
surfaces. Annual Review of Analytical Chemistry 2011,4, 83-104. 

2. Prabhakaran, V.; Mehdi, B. L.; Ditto, J. J.; Engelhard, M. H.; Wang, B.; 
Gunaratne, K. D. D.; Johnson, D. C.; Browning, N. D.; Johnson, G. E.; Laskin, 

J., Rational design of efficient electrode–electrolyte interfaces for solid-
state energy storage using ion soft landing. Nature Communications2016,7, 

11399. 

3. Prabhakaran, V.; Johnson, G. E.; Wang, B.; Laskin, J., In situ solid-state 
electrochemistry of mass-selected ions at well-defined electrode–

electrolyte interfaces. Proceedings of the National Academy of Sciences 
2016,113, 13324-13329. 

4. Gunaratne, K. D. D.; Johnson, G. E.; Andersen, A.; Du, D.; Zhang, W.; 
Prabhakaran, V.; Lin, Y.; Laskin, J., Controlling the Charge State and Redox 

Properties of Supported Polyoxometalates via Soft Landing of Mass-
Selected Ions. Journal of Physical Chemistry C 2014,118, 27611-27622. 



Author Index 

Author Index 4 Bold page indicates presenter 

Bold page numbers indicate presenter 
— B — 
Bittle, E.G.: SS+AS+BI+MI+NS-ThA8, 2 
Brown, S.: SS+AS+BI+MI+NS-ThA2, 1 
— C — 
Chen, Y.: SS+AS+BI+MI+NS-ThA6, 1 
Cheng, C.: SS+AS+BI+MI+NS-ThA9, 2 
— D — 
DeBenedetti, W.J.I.: SS+AS+BI+MI+NS-

ThA10, 2 
— E — 
Engelhard, M.H.: SS+AS+BI+MI+NS-ThA11, 2 
— F — 
Fu, C.: SS+AS+BI+MI+NS-ThA6, 1 
— G — 
Gallagher, M.C.: SS+AS+BI+MI+NS-ThA6, 1 
Giangrisostomi, E.: SS+AS+BI+MI+NS-ThA8, 2 
Grzeskowiak, J.: SS+AS+BI+MI+NS-ThA7, 2 
Gupta, M.: SS+AS+BI+MI+NS-ThA9, 2 

— H — 
Hacker, C.A.: SS+AS+BI+MI+NS-ThA8, 2 
Harville, L.K.: SS+AS+BI+MI+NS-ThA1, 1 
Hines, M.A.: SS+AS+BI+MI+NS-ThA10, 2 
— I — 
Iski, E.V.: SS+AS+BI+MI+NS-ThA1, 1 
— J — 
Jackson, L.E.: SS+AS+BI+MI+NS-ThA1, 1 
Johnson, G.E.: SS+AS+BI+MI+NS-ThA11, 2 
— L — 
LeBlanc, G.: SS+AS+BI+MI+NS-ThA1, 1 
Liu, R.: SS+AS+BI+MI+NS-ThA6, 1 
— M — 
Martinez, A.: SS+AS+BI+MI+NS-ThA11, 2 
Moisseev, A.G.: SS+AS+BI+MI+NS-ThA6, 1 
Morgan, H.R.: SS+AS+BI+MI+NS-ThA1, 1 
Murugesan, V.: SS+AS+BI+MI+NS-ThA11, 2 
— O — 
Ovsyannikov, R.: SS+AS+BI+MI+NS-ThA8, 2 

— P — 
Perepichka, D.F.: SS+AS+BI+MI+NS-ThA6, 1 
Phillips, J.A.: SS+AS+BI+MI+NS-ThA1, 1 
Pookpanratana, S.: SS+AS+BI+MI+NS-ThA8, 2 
Prabhakaran, V.: SS+AS+BI+MI+NS-ThA11, 2 
— R — 
Rao, M.R.: SS+AS+BI+MI+NS-ThA6, 1 
Reutt-Robey, J.E.: SS+AS+BI+MI+NS-ThA3, 1 
Robey, S.W.: SS+AS+BI+MI+NS-ThA8, 2 
— S — 
Sayler, J.D.: SS+AS+BI+MI+NS-ThA2, 1 
Sibener, S.J.: SS+AS+BI+MI+NS-ThA2, 1 
Skibinski, E.S.: SS+AS+BI+MI+NS-ThA10, 2 
— T — 
Thevuthasan, S.: SS+AS+BI+MI+NS-ThA11, 2 
— V — 
Ventrice, Jr., C.A.: SS+AS+BI+MI+NS-ThA7, 2 

 


