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2:20pm PS+PB+SE-TuA1 Compact, Low Cost Atmospheric Pressure Plasma 
Jets Driven by Piezoelectric Transformers, Michael Johnson, National 
Research Council; D.R. Boris, L. Petrova, S.G. Walton, Naval Research 
Laboratory 

In order for non-thermal atmospheric pressure plasma technology to be 
used for applications outside of the laboratory, there is a need to develop 
low-cost, portable devices that can be used for applications in the field. 
Constructing portable power supplies that can produce stable, non-thermal 
plasmas in full density air can be challenging as large electric fields are 
required to generate breakdown. Piezoelectric transformers are solid state 
transformers that can produce large gains in voltage, which makes them 
attractive candidates for plasma production. In this work, a piezoelectric 
transformer is used to amplify a low voltage AC signal in order to produce 
an atmospheric pressure plasma jet. Using this approach, plasma jets were 
generated with input voltages as low as 10 V when the piezoelectric 
transformer was operated at its resonance frequency (≈ 88 kHz). The 
electrical and optical characteristics of the piezoelectric driven plasma jet 
was compared to a plasma jet produced using a conventional high voltage 
sinewave of comparable operating frequency. Both jets were examined in 
helium and argon for a variety of different flow rates and operating 
voltages. The length of the jets were measured to determine if the 
piezoelectric transformer limited the potential size of the plasma jet. The 
current carried by the plasma jets were measured along with optical 
emission spectroscopy to examine the relative characteristics of the jets. 
Together, the results suggest the piezoelectric material may have influence 
beyond simple voltage amplification. 

This work was supported by the Naval Research Laboratory Base Program. 
This research was performed while Michael Johnson held an NRC Research 
Associateship award at the U.S. Naval Research Laboratory. 

2:40pm PS+PB+SE-TuA2 Process Regimes of Atmospheric Pressure 
Plasma-enhanced Chemical Vapor Deposition with Source Materials 
Highly Diluted in Inert Gases, SeungJae Baik, J. Jang, Hankyong National 
University, Republic of Korea; H.-J. Oh, Yonsei University, Republic of Korea 

Plasma-enhanced chemical vapor deposition (CVD) is appropriate for fast 
deposition with moderate film quality, but to form high quality materials 
such as epitaxial thin films, thermal processes at higher temperature are 
more favorable. High energy particles that are statistically produced in 
plasma processes are sources of film quality degradation. It has been 
previously reported that the plasma process at high working pressure, e.g., 
atmospheric pressure is feasible for epitaxial Si growth; where source gas 
species are highly diluted in inert gas. Employing a large dilution of source 
materials opens a new process regime in plasma-enhanced CVD: (1) low 
damage plasma processing (2) high deposition rate process with controlled 
powder generation (3) efficient usage of source materials. 

We have performed Si thin film deposition processes with silane and 
hydrogen as source materials highly diluted in He or Ar gases under 
working pressure close to the atmospheric pressure (up to 700 torr). The 
new process regimes showing low damage plasma processing, high 
deposition rate with controlled powder generation, and efficient usage of 
source materials are experimentally demonstrated in various process 
conditions. In addition, the impurity incorporation into the film during 
deposition processes degrades the crytalline quality of the deposited Si thin 
films, which can be improved by employing plasma electrode pre-coating 
or pre-deposition cleaning process. Furthermore, the trade-off relation of 
plasma power and gas flow velocity revealed the process window of 
polycrystalline thin film deposition, and even epitaxial growth. 

Atmospheric plasma-enhanced CVD tool is promising for fast deposition 
and low damage processing, and moreover, cheaper setup may also be 
viable via pre-deposition cleaning processes instead of utilizing expensive 
vacuum facilities. 

3:00pm PS+PB+SE-TuA3 Plasma-enhanced Chemical Film Conversion 
(PECFC): Direct, Low-temperature Growth of Solution-processible and 
Printable Layered Thin Films, T. Liu, R. Mohan Sankaran, Case Western 
Reserve University 

In plasma-enhanced chemical vapor deposition (PECVD) and plasma-
enhanced atomic layer deposition (PEALD), the addition of a plasma to 
dissociate or excite the gas molecules and create active chemical and 
energetic species can lower the thermal energy required at the substrate to 
drive thin film nucleation and growth. Here, we show that a similar 
approach can be used to lower the temperature required to convert 
molecular precursors deposited from solution onto a substrate to a 
functional, crystalline thin film which we term plasma-enhanced chemical 
film conversion (PECFC). We apply this method to layered materials such as 
hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS2) whose 
applications are currently limited by the lack of large-area, low-
temperature, direct (substrate independent) growth processes. 

Our experimental setup consists of an atmospheric-pressure, planar, 
dielectric barrier discharge and a cold wall substrate heater. Single 
molecular precursors for h-BN, ammonia borane, or MoS2, ammonia 
tetrathiomolybdate were dissolved in solution and deposited by a variety 
of methods including dropcasting, airbrush spraying, spin coating, and 
inkjet printing on different substrates such as silicon (Si), silicon dioxide 
(SiO2), and copper. The area of the film was only limited by the current size 
of our plasma source which is ~2 in2. After conversion, the films were 
characterized by X-ray diffraction, micro Raman spectroscopy, atomic force 
microscopy, scanning electron microscopy, and transmission electron 
microscopy. We systematically compared thermal and plasma-assisted 
conversion at the same temperatures, background gas environments, and 
substrates. For h-BN, our results show that thermal conversion requires a 
minimum of 800 oC to nucleate on SiO2, but only 650 oC with the addition of 
a plasma. Adding 20% H2 enables a further 150 oC reduction for plasma 
conversion. For MoS2, our results show that nucleation is enhanced in the 
presence of a plasma at the same growth temperature of 500 oC and a 
subsequent annealing step leads to a smooth (<0.2 nm RMS surface 
roughness) and highly crystalline film. We suggest that plasma species, 
especially atomic hydrogen (H), are involved in several important surface 
reaction mechanisms including abstraction of hydrogen, insertion in 
strained bonds, and radical formation, to enhance grain growth that overall 
enhance nucleation and growth of crystalline domains. We will also discuss 
the performance of the PECFC materials in electronic and energy devices. 

3:20pm PS+PB+SE-TuA4 Plasma-based Remediation of Nanoscale 
Particulate Matter in Charbroiler Smoke Emissions, Sisi Yang, S. 
Subramanian, University of Southern California, Los Angeles; D. Singleton, 
Transient Plasma Systems; C. Schroeder, W. Schroeder, M. Gundersen, S.B. 
Cronin, University of Southern California, Los Angeles 

Recent studies have shown ultrafine particulate matter (UFPM) produced 
in commercial charbroiling processes represents a serious health hazard 
and has been linked to various forms of cancer. In this study, we 
demonstrate a highly effective method for treating restaurant smoke 
emissions using a transient pulsed plasma reactor based on a nanosecond 
high voltage pulse generator. We measure the size and relative mass 
distribution of particulate matter produced in commercial charbroiling 
processes (e.g., cooking of hamburger meat) both with and without the 
plasma treatment. Here, the plasma discharge is produced in a 3” diameter 
cylindrical reactor with a 5-10 nanosecond high voltage (17 kV) pulse 
generator. The distribution of untreated nanoparticle sizes peaked around 
125-150 nm in diameter, as measured using a scanning mobility particle 
sizer (SMPS) spectrometer. With plasma treatment, we observe up to a 55-
fold reduction in total particle mass and a significant reduction in the 
nanoparticle size distribution using this method. The effectiveness of the 
UFPM remediation increases with both the pulse repetition rate and pulse 
voltage, demonstrating the scalability of this approach for treating higher 
flow rates and larger systems. 

4:20pm PS+PB+SE-TuA7 The Interactions of Atmospheric Pressure Plasma 
Jets with Surfaces: In situ Measurements of Electron Heating in Materials, 
Scott Walton, U.S. Naval Research Laboratory; J. Tomko, B.M. Foley, 
University of Virginia; D.R. Boris, U.S. Naval Research Laboratory; M.J. 
Johnson, National Research Council; Tz.B. Petrova, U.S. Naval Research 
Laboratory; A. Giri, P.E. Hopkins, University of Virginia 

The energy flux to a surface during plasma exposure and the associated 
surface heating are of long standing interest since both contribute to the 
physicochemical changes during plasma-based materials processing. A 
unique feature of plasmas compared to other methods of materials 
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synthesis and processing is that the energy flux is delivered and absorbed 
at or very near the surface over short time scales, and thus requires fast, 
surface-sensitive techniques to fully appreciate the dynamics of the 
plasma-surface interface. To achieve this, we employ pump-probe Time-
Domain Thermoreflectance (TDTR) to measure electron and phonon 
excitation and energy transport dynamics in thin metal films during 
exposure to an atmospheric pressure plasma jet. The results show the 
energy delivered by the plasma jet causes a localized thermal spike that is 
dissipated radially from the point of contact. More specifically, energy 
delivered via the flux of particles and photons causes the kinetic energy of 
the electrons within the material to increase over an area commensurate 
with the plasma jet radius. That energy is then dissipated through electron-
electron collisions and electron-phonon interactions as the electrons 
propagate radially from the point of contact. These results, in conjunction 
with voltage and current measurements, will be discussed in an effort to 
develop a first order understanding of energy transfer and relevant kinetics 
during plasma jet–surface interactions. This work is partially supported by 
the Naval Research Laboratory base program. 

4:40pm PS+PB+SE-TuA8 Surface Activation by Atmospheric Plasma: the 
Right Technology for the Right Application, A. Ozkan, D. Merche, Francois 
Reniers, Université Libre de Bruxelles, Belgium 

Cold atmospheric plasma are widely used for surface activation in many 
applications. Today, many technologies are available, such as coronas, 
dielectric barrier discharges (DBDs), remote (or post-discharge) DBDs, 
torches, operating in the radiofrequency mode, gliding arcs, ……. A wide 
variety of operating conditions can be found in the literature or on the 
websites of the manufacturers : AC, DC, kHz range, noble gas or air, high or 
low power, ….. For the scientist, the lab manager, or the CTO of a company 
looking for a new, clean, activation technique, the vast list of possibilities, 
although representing opportunities, may represent a challenge. In this 
paper, we try to set up a product driven roadmap to help the scientist 
making the best choice for the plasma technology to implement for his 
application. Through a few selected examples, all tested in our laboratory 
equipped with 7 different plasma technologies and 15 reactors, we show 
which is the best technology for the application of interest. Advantages and 
drawbacks of each of the tested technologies with respect of the material, 
the energy consumption, and the time and cost of operation are presented, 
and discussed in terms of plasma and surface characterization. 

The applications chosen addresses a wide range of questions such as:  

- which plasma to chose to clean and activate glass substrates (a 
comparison between torches and in-situ DBDs is proposed) 

- atmospheric plasma to grow an oxide layer on aluminium : a comparison 
between an air operated torch and plasma electrolytic oxidation 

- how to activate a macroscopic 3D pre-painted metal piece for further 
painting using an atmospheric plasma torch. A comparison between 4 
torches is presented 

- how to activate the surface of selected polymers using DBD, RF torches 
with different gases 

- how to activate surfaces (silicon, polymers, nanotubes) for further 
grafting of metal nanoparticles 

- how to modify PTFE using a torch, what are the side effects, and why. 

These examples will be starting points for a more general discussion about 
methodology, based on the final expectations and the chemistry and 
physics of each technology. 

5:00pm PS+PB+SE-TuA9 Aluminum Alloy Surface Cleaning by Atmospheric 
Pressure Microwave Discharge, Lucia Bonova, W. Zhu, A. Farrokhpanah, 
D.V. Krogstad, Z.K. Jeckell, S. Chaudhuri, D.N. Ruzic, University of Illinois at 
Urbana-Champaign 

Aluminum and its alloys are commonly used as lightweight materials in 
many industrial sectors including aerospace. During the manufacturing 
process of aluminum, a series of lubricants and additives are used to avoid 
sticking of layers and prevent degradation or corrosion. The residual 
hydrocarbon film is typically removed by a chemical chromate process prior 
to the deposition of an anticorrosive layer. We present an alternate 
method to remove the hydrocarbons deposited on the aluminum surface 
by an atmospheric pressure microwave discharge. 

The Center for Plasma Material Interaction (CPMI) at University of Illinois 
has developed novel patented technologies of Evaporative Coatings at 
Atmosphere Pressure (ECAP) using a 2.45 GHz microwave power to treat 
the aluminum surface with an air plasma at atmospheric pressure. The 

cleaning effect of this microwave plasma was analyzed by contact angle 
measurements, XPS and ATR-FTIR. 

5:20pm PS+PB+SE-TuA10 Temporal and Spatial Study of a Parallel pin-
plate Plasma Reactor, Vladimir Milosavljević, M. Gulan, L. Scally, P.J. 
Cullen, BioPlasma Research Group, Dublin Institute of Technology, Dublin, 
Ireland 

Electrical discharges in gases have demonstrated a wide range of effects for 
material science and energy applications. Under both laboratory and 
industrial setups, such electrical discharges can produce a stable plasma. 
From both fundamental and applied purposes, such gaseous plasmas are 
well studied, the technology has found many applications. Recent interest 
has turned to operating such plasma under atmospheric conditions. The 
main advantage of the plasma discharge at atmospheric pressure over low-
pressure plasma or high-pressure plasma, is that no reaction vessel is 
needed. However, with increasing gas pressures, the stability and 
reproducibility of the plasma discharge are significantly impacted. For 
atmospheric pressure, in order to obtain a stable plasma discharge in 
addition to the electrodes a dielectric barrier is required. The function of 
this dielectric is to spread the electrical charge throughout the entire 
electrode in order to create multiple conducting paths for the discharges to 
occur. This is the foundation of the Dielectric-barrier discharge (DBD). One 
or both electrodes in DBD could be covered by a dielectric material which 
serves as an electric polarizer, and helps maintain a low gas temperature. 
Over the course of its life, for any DBD system, the biggest disadvantage is 
the dielectric contamination. In most cases, this dielectric is a polymer, and 
polymers are generally fragile materials. Therefore, developing a plasma 
system that does not require a dielectric, and has a reproducible and stable 
electrical discharge at atmospheric pressure would offer new system 
designs and applications. 

This work presents a pulsing plasma system (PPS) which can run at 
atmospheric pressure under various external parameters. The system has a 
planar configuration with a bottom (grounded) flat electrode and a top 
multiple pin electrode (high voltage). The design of this PPS allows several 
parameters to be modified, such as: discharge frequency (30-125 kHz), duty 
cycle (1-100%), duty cycle frequency (100-3000 Hz), peak-to-peak voltage 
(up 60 kV), power (up to 700 W), distance between electrodes (up to 
55mm), and treatment time (unlimited). The new plasma system allows an 
increase in the surface-plasma interaction selectivity and to reduce plasma 
induced damages to surfaces. The electron properties and gas radical 
density generated for the system under such control parameters are 
reported. 

This work was funded by the Dublin Institute of Technology and 
PlasmaLeap Technologies, Ireland. 

5:40pm PS+PB+SE-TuA11 Plasma-modulated Metamaterials and Photonic 
Crystals, Jeffrey Hopwood, H. Kim, Tufts University 

Metamaterials are periodic assemblies of man-made structures that can 
mimic naturally occurring materials. By clever design, electromagnetic 
transmission through metamaterials may have extraordinary properties 
such as negative refractive index. In this paper we describe the formation 
of atmospheric pressure argon microplasmas within metamaterials as well 
as photonic crystals. Microplasma ignition within these materials is 
initiated by first creating an implicit microwave or millimeter wave 
resonance within the structure. For example, a vacancy in the artificial 
crystalline structure can act as a millimeter wave cavity. Incident EM waves 
excite this resonance and the strong resonant electric field causes gas 
breakdown. 

In general, metamaterials are pre-configured during the design process and 
exhibit fixed transmission characteristics. The self-initiated plasma, 
however, dynamically changes the metamaterial. We show that depending 
on the gas pressure and electron density, microplasma inclusions may act 
as dielectrics or conductors. Experimentally one observes that the 
appearance of microplasma causes a change in the material from 
transparent to reflective, or vice versa. A metamaterial consisting of an 
array of copper split-ring resonators (3x3x9) is described in terms of the 
plasma density and its microwave transmission from 1-3 GHz. The 
appearance of microplasmas quenches the resonance and decouples the 
resonators from one another; the transmission spectra are radically 
changed upon de-coupling. In the millimeter wave band, a photonic crystal 
consisting of alumina rods is shown to support argon plasma at 43 GHz. The 
transient response of the photonic crystal during pulsed EM radiation and 
plasma formation is measured and found to act as a power limiting device. 
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6:00pm PS+PB+SE-TuA12 Generation of Large-Volume Transient Glow 
Discharge Plasma by an External Fast Ionization Wave (FIW) from a 
Plasma Jet, Hamid Razavi, M. Laroussi, Old Dominion University 

A non-thermal transient glow discharge can be generated remotely in a 
nonconductive low–pressure chamber by an external guided fast ionization 
wave (FIW). We used an atmospheric-pressure LTP jet (APLTPJ) as an 
external source of FIW to transfer the enhanced electric field at the 
wavefront to a reduced–pressure Pyrex glass chamber with no electrical 
connection to the chamber [1]. Here, we study on the interaction of FIW 
with a dielectric surface which forms the wall of the low-pressure system. 

In this study, key characteristics of the transient diffuse plasma are 
discussed. Plasma parameters were measured by Langmuir probe and 
APLTPJ electrical measurements were done to elucidate the operational 
mechanisms of the FIW as an igniter of a reduced pressure glow discharge 
plasma. It is shown that the transient discharge in the low-pressure 
chamber generates a bulk plasma with negative potential due to the 
nonconductive boundary. We also used Optical emission spectroscopy 
(OES) to show the physical and chemical characteristics of the APLTPJ 
plasma and the transient glow discharge plasma. It is shown that the glow 
discharge plasma is capable of producing second and third ionized nitrogen 
and oxygen atoms (OII, NII, and NIII). Fast images were taken by an 
intensified CCD to study the launching and propagation phases of both 
APLTPJ plasma and the transient reduced pressure glow discharge plasma 
as well as the incidence of the guided FIW on a dielectric surface. 

[1] M. Laroussi and H. Razavi, “Indirect Generation of a Large Volume 
Diffuse Plasma By an Ionization Wave from a Plasma Jet”, IEEE Trans. 
Plasma Sci., Vol. 43, No. 7, pp. 2226-2229, (2015). 
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