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8:00am PS+EM+TF-ThM1 Precise Flux Control of Ions and Radicals using 
Electron Beam Generated Plasmas, David Boris, U.S. Naval Research 
Laboratory INVITED 

Processing with atomic layer precision requires the ability to not only add, 
remove or modify one monolayer of material but to also leave adjacent 
layers unchanged. This requires fine control over the flux of species and 
energy deposition at the surface. In addition to the need for low damage, 
the complex device structures proposed for next generation nano-
electronics will require control over radical to ion ratio as well. Electron 
beam-generated plasmas are generally characterized by high charged 
particle densities (1010- 1012 cm-3), low electron temperatures (0.3 - 1.0 eV), 
and in reactive gas backgrounds, a relatively low radical production rate 
compared to discharges. These characteristics provide the ability to 
precisely control the ion energy at adjacent surfaces and importantly, also 
the ability to control the ratio of ion to radical fluxes. In this work, we 
demonstrate this precise level of control using a variety of plasma 
characterization techniques and demonstrate how the applicability of 
these features to the processing of select materials systems. Specifically, 
we will discuss the processing of monolayer material systems such as 
graphene and MoS2, where the material properties can be tuned without 
unwanted erosion or damage. Also SiN etching using pulsed, electron beam 
generated plasmas produced in SF6 backgrounds is examined with 
particular attention paid to the etch rates, selectivity (vs. carbon films, Si 
and SiO2), and patterning as function of operating parameters such as 
relative gas concentration, operating pressure, and substrate bias. Lastly, 
we address the use of electron beam generated plasmas for native oxide 
removal and subsequent passivation of surfaces. The processing results are 
compared with plasma diagnostics to gain a better understanding of the 
process requirements. This work is partially supported by the Naval 
Research Laboratory base program. 

8:40am PS+EM+TF-ThM3 Demonstration of Self-limiting Nature and 
Selectivity Control in Annealing Procedures for Rapid Thermal-Cyclic ALE 
of W, TiN, and SiN, Kazunori Shinoda, H. Kobayashi, Hitachi, Japan; N. 
Miyoshi, K. Kawamura, M. Izawa, Hitachi High-Technologies, Japan; K. 
Ishikawa, M. Hori, Nagoya University, Japan 

Isotropic atomic layer etching (ALE) is expected to play an important role in 
semiconductor manufacturing because the next-generation devices will 

have miniaturized three-dimensional structures. The authors have 
developed isotropic ALE for SiN, TiN, and W using rapid thermal-cyclic 

processes, which are cyclic repetitions of plasma exposure and infrared 
annealing [1, 2]. Isotropic ALE ideally consists of cyclic repetitions of self-

limiting formation and self-limiting desorption of the surface-modified 
layers. In the previous publications, the authors demonstrated self-limiting 
nature of the plasma exposure steps. In this paper, self-limiting nature of 

the infrared annealing steps are demonstrated. It is also demonstrated that 
etching selectivity between different materials can be controlled to be 

from infinitely selective to nonselective by adjusting the infrared annealing 
time. 

The experimental apparatus used in this study is an ALE tool for 300-mm 
wafers. This tool is composed of a processing chamber, an inductively-

coupled plasma source, infrared lamps, and in-situ ellipsometer. Films of 
W, TiN, and SiN deposited on Si substrates were used as sample materials. 

The wafers were first exposed to hydrofluorocarbon-based plasma to 
produce surface-modified layers on the surfaces of the materials to be 

etched. The wafers were then annealed by infrared irradiation to remove 
the surface-modified layers. The cycle of plasma exposure and infrared 

annealing was repeated ten times. 

Firstly, infrared annealing time dependence of wafer temperature was 
examined. It was found that wafer temperature increased with increasing 
irradiation time at around 7°C /sec. Next, we examined how the annealing 

time affected the etched amount per cycle for W, TiN, and SiN. In the 
experiment, ten-cycle etching was repeated changing the annealing time in 
the range from 0 to 24 sec. The etched amount per cycle for W increased 
with the annealing time and saturated when the annealing time exceeded 
10 sec. The etched amount per cycle for TiN increased when the annealing 

time exceeded 10 sec and saturated when the annealing time exceeded 20 
sec. The etched amount per cycle for SiN saturated when the annealing 

time exceeded 15 sec. These results imply that the ALE process for W, TiN, 
and SiN are self-limiting in nature. Moreover, by choosing an optimal 

infrared annealing time, both highly selective and nonselective ALE for 
different materials was obtained. For instance, infinitely selective ALE of W 

over TiN was achieved when infrared annealing time was 8 sec. 

[1] K. Shinoda et al., J. Phys. D: Appl. Phys. 50, 194001 (2017). 

[2] K. Shinoda et al., SPIE Advanced Lithography 10589-17 (2018). 

9:00am PS+EM+TF-ThM4 Mechanisms for Atomic Layer Etching of Metal 
Films by the Formation of Beta-diketonate Metal Complexes, Tomoko Ito, 
K. Karahashi, S. Hamaguchi, Osaka University, Japan 

Ar+ ion milling processes have been widely used for the fabrication of 
magnetic tunnel junctions (MTJ) of magnetoresistive random access 
memory (MRAM) devices. However, Ar+ ion milling has a problem of 
surface damage caused by high energy ion bombardment, so the 
development oflow-energy reactive ion etching (RIE) processes is 
imperative for further miniaturization of MTJ cells. In recent years, beta-
diketones such as acetylacetone (acac) andhexafluoroacetylacetone (hfac) 
have been considered as efficient etchants for thermal atomic layer etching 
(ALE) of metal films by the formation of volatile beta-diketonate metal 
complexes. Moreover, if low-energy ion incidence, rather than heating of 
the substrate, enhances the formation of organic metal complexes and 
their desorption from the metal surface, anisotropic ALE of metal films may 
be achieved. In this study, we explore the possibility of the development of 
such ion-enhanced metal surface etching using surface reactions of beta-
diketones. The objectives of our research are, therefore, to understand 
surface reactions between gas-phase beta-diketones and metal surfaces 
and to clarify the beam-surface interaction between low-energy Ar+ ions 
and beta-diketone adsorbed metal surfaces. To achieve these objectives, 
we have developed an atomic layer process (ALP) surface analysis system, 
which consists of a high-resolution X-ray photoelectron spectroscopy (XPS) 
analysis chamber and an ALP reaction chamber. The system allows in-situ 
analyses of, e.g., acac orhfac adsorbed Cu, Ni and Co surfaces and those 
after an exposure to low-energy Ar+ or Xe+ ion fluxes. The typical reactive 
gas exposure was in the range of 100 -10000 L (in units of L: Langmuir: 10-6 

Torr・s) and the ion energy was in the range of 10- 50 eV. It is found that, 

for pre-oxidized Ni and Cu surfaces, hfac molecules adsorbed without C-O 
and C-F bond braking. It is also found that low-energy Ar+ ion injection 
breaks down adsorbed hfac molecules even on a pre-oxidized Ni surface, 
fluorinating the Ni surface. The results show the difficulty of using low-
energy ion exposure to enhance the formation of volatile metal complexes 
but also suggests a possibility of atomic-level surface modification of metal 
films using organic molecules, which may be used for highly controlled 
etching processes. 

9:20am PS+EM+TF-ThM5 Thermal Atomic Layer Etching of Transition 
Metal Films, Charles Winter, Wayne State University INVITED 

Atomic layer deposition (ALD) features self-limited growth, which affords 
inherently conformal coatings on shaped substrates and Ångstrom-level 

thickness control.1 Atomic layer etching (ALE) is a related technique, where 
layers in a film are removed one layer at a time and involve a self-limited 

mechanism.2 Until recently, almost all ALE processes entailed either 
plasmas or ion beams.2 Plasmas and ion beams require expensive 

equipment and the energetic species may damage sensitive layers in films. 
As a result, there is considerable interest in the development of purely 
thermal ALD processes that use chemical reactions to achieve thickness 

reductions. The first thermal ALE processes were only reported in 2015 for 
metal oxides and fluorides,3-5 and many materials can now be etched 

thermally. Cobalt, copper and other first row transition metal films have 
wide applications in microelectronics devices.6 The ability to carry out ALE 

on these metals would be very valuable. However, there has been little 
progress reported to date in the thermal ALD of first row transition metal 

films. We recently reported the ALD growth of cobalt7 metal films and have 
explored these films as starting substrates in thermal ALE. In this talk, we 

will give an overview of the thermal ALE of cobalt metal films. These 
processes entail treatment of the cobalt metal films with formic acid in a 
first step, presumably to afford surface layers of cobalt(II) formate. These 
oxidized surfaces are then treated with various ligands in a second step to 

afford volatile cobalt(II) complexes, resulting in etching. Ligands that can be 
used to promote etching will be overviewed. Thermal ALE of copper and 

other metal films will also be presented. 

1. S.M. George, Chem. Rev. 110 (2013) 111-131. 
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2. K.J. Kanarik, T. Lill, E.A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, 
R.A. Gottscho, J. Vac. Sci. Technol. A 33 (2015) 020802. 

3. Y. Lee, S.M. George, ACS Nano 9 (2015)2061-2070. Y. Lee, J.W. DuMont, 
S.M. George, Chem. Mater. 27 (2015)3648-3657. 

4. Y. Lee, J.W. DuMont, S.M. George, J. Phys. Chem. C 119 (2015) 25385-
25393. 

5. Y. Lee, J.W. DuMont, S.M. George, ECS J. Solid St. Sci. Technol. 4 (2015) 
N5013-N5022. 

6. C.-C. Yang, P. Flaitz, P. Wang, F. Chen, D. Edelstein, IEEE Electron Dev. 
Lett. 31 (2010) 728-730. 

7. M.M. Kerrigan, J.P. Klesko, C.H. Winter, Chem. Mater. 29 (2017) 7458-
7466. 

11:00am PS+EM+TF-ThM10 Gas Cluster Ion Beam Etching under Organic 
Vapor for Atomic Layer Etching, Noriaki Toyoda, University of Hyogo, 
Japan INVITED 

In our presentation, we will present our investigation of the usage of a gas 
cluster ion beam (GCIB) under organic vapor to irradiate a surface to 

produce atomic layer etchings (ALE). Gas cluster ions are aggregates of 
thousands of atoms or molecules that are collectively ionized and can be 

focused into a GCIB. The kinetic energy of a gas cluster ion is shared 
between the thousands of gas atoms or molecules; hence, the energy per 

particle in the cluster can be easily reduced to several eV. Furthermore, gas 
cluster ions can transfer a relatively large amount of energy to a 

concentrated area of the target surface; thus, a large number of target 
atoms can be sputtered by one gas cluster ion. As a result of the high-

energy impact of gas cluster ions, low-damage surface modification takes 
place. Because of the features outlined above, GCIB guns are also widely 

used in conjunction with surface analysis techniques such as secondary ion 
mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). 

Because gas cluster ions deposit energy in a condensed manner without 
severe damage, surface reactions are enhanced even at room temperature, 
which is beneficial for ALE. In our study, we performed halogen-free ALE of 

Cu using oxygen-GCIB irradiation under acetic acid vapor [1]. We 
performed the etching process in the following steps: (1) adsorption of 
acetic acid on Cu, (2) evacuation of residual acetic acid vapor, and (3) 

reaction between acetic acid and Cu with the subsequent removal of the 
surface Cu layer via oxygen-GCIB irradiation. During one cycle of ALE, a very 

thin layer of acetic acid was adsorbed onto the Cu. Subsequently, the 
chemically altered Cu on the surface layer was removed with oxygen GCIB 
irradiation. When the Cu surface was irradiated with a 20 kV oxygen GCIB, 
Cu atoms beneath the surface layer were also sputtered after the removal 
of the chemically modified layer and as a result, this etching process was 

not self-limiting. On the contrary, when the surface was irradiated with a 5 
kV oxygen GCIB, Cu atoms beneath the surface layer were not sputtered 

after the removal of the chemically modified layer. Thus, it could be 
concluded that halogen-free ALE could only be achieved at a lower oxygen 

GCIB voltage, namely 5kV. In the presentation, we will report the 
preliminary results of the various metal etching experiments we conducted 

with a GCIB under organic vapors and report their applications for ALE. 

[1] N. Toyoda and A. Ogawa, Journal of Physics D: Applied Physics, 50, 
184003 (2017). 

11:40am PS+EM+TF-ThM12 Utilizing Chemical Structure of 
Hydrofluorocarbon Precursors to Achieve Ultra-High Selective Material 
Removal in Atomic Layer Etching, Kang-Yi Lin, C. Li, University of 
Maryland, College Park; S.U. Engelmann, R.L. Bruce, E.A. Joseph, IBM 
Research Division, T.J. Watson Research Center; D. Metzler, IBM Research 
Division, Albany, NY; G.S. Oehrlein, University of Maryland, College Park 

Atomic layer etching (ALE) applies sequential deposition and etching steps 
with short processing step length to establish selective material removal 
and atomic scale precision. The reactant pulsed in the ALE sequential 
reaction steps may behave differently from its use in continuous plasma 
etching, since for ALE the reactant is injected only during the deposition 
step and the deposited film undergoes non-steady-state surface desorption 
reaction during the etching step. In this work we will compare a mixture of 
a fluorocarbon (FC) precursor and H2 with a hydrofluorocarbon (HFC) 
precursor, i.e. mixtures of octafluorocyclobutane (C4F8) with H2 and 3,3,3-
trifluoropropene (C3H3F3), for SiO2 ALE and etching of SiO2 selective to Si3N4, 
Si and SiGe. For continuous plasma etching, process gas mixtures, e.g. 
C4F8/H2, have been employed and enable highly selective material removal 
based on reduction of the fluorine content of deposited steady-state HFC 
films. This approach, however, is not successful for ALE since the residual 
hydrogen during reaction steps will induce etching and reduce the 

remaining thickness of the deposited HFC film. This HFC film on the surface 
is required for both etching of SiO2 and passivation of the Si3N4, Si and SiGe, 
and a reduction in film thickness leads to lower material etching selectivity. 
C3H3F3 with hydrogen reduces fluorine content in the precursor structure 
and allows deposition of fluorine-deficient HFC films without suppressing 
the formation of the passivation layer on the surface. Our results support 
that gas pulsing of complex HFC precursors in ALE provides a novel 
opportunity of utilizing the precursor chemical structure for achieving near-
atomically abrupt selective ALE processes for SiO2 over Si3N4, Si, SiGe and 
potentially for other materials. The authors gratefully acknowledge 
financial support of this work by the Semiconductor Research Corporation 
(2017-NM-2726). 

12:00pm PS+EM+TF-ThM13 Etch Selectivity Mechanisms of Implanted 
Over Pristine SiN Materials in NH3/NF3 Remote Plasma for Quasi Atomic 
Layer Etching with the Smart Etch Concept, Vincent Renaud, E. Pargon, C. 
Petit-Etienne, LTM, Univ. Grenoble Alpes, CEA-LETI, France; J.-P. Barnes, N. 
Rochat, Cea, Leti, Minatec, France; L. Vallier, G. Cunge, O. Joubert, LTM, 
Univ. Grenoble Alpes, CEA-LETI, France 

The complexification of 3D architectures of advanced CMOS devices 
require to etch materials with a sub-nanometer accuracy without 
introducing damage to the surface and with infinite selectivity between the 
materials in presence. The Smart etch concept is a n original etching 
approach which has successfully been proposed to etch silicon nitride 
spacer with less than 1nm of spacer dimension loss and SiGe recess. This 
technic relies on a surface modification by H or He ion implantation 
performed in capacitive coupled plasma (CCP) reactor, followed by a 
selective removal of the modified layer over the pristine material. The 
selective removal can be achieved either by wet or remote plasma source 
etching. Today, the mechanisms driven the etch selectivity between the 
pristine and modified SiN layers in remote plasma are still misunderstood 

In this paper, we propose to investigate the etching mechanisms of pristine 
and implanted silicon nitride layers in NH3 /NF3 remote plasma. The etching 
experiments are performed in 300mm industrial prototype of reactor, 
equipped with both a CCP and a remote plasma source allowing to achieve 
the implantation and the removal steps in the same reactor chamber. The 
substrate temperature can be varied from 40 to 200°C during the process. 
The etching kinetics are followed in real time thanks to in situ kinetic 
ellipsometry. The SiN layers are characterized by XPS, XRR and Tof-SIMS. 

The real time monitoring of the etching reveals that there is a delay before 
the SiN layers are etched for any plasma conditions and wafer 
temperature. The incubation time increases with substrate temperature 
and depends on the surface state. For instance, our results show that a 
deoxidized SiN surface using HF wet is not etched in NH3/NF3 remote 
plasma, proving that the oxygen acts as a catalysis of the reaction, and 
subsequent material etching. Moreover, it is shown that the main impact of 
the He or H2 implantation step is to functionalize the SiN surface by 
implanting residual oxygen present in the chamber and generating dangling 
bond. Thus, the incubation time when etching implanted SiN layers in 
NH3/NF3 plasma at 100°C is only of 30s compared to 84s for pristine SiN. 
This means that short duration of remote plasma is the key parameter to 
achieve, infinite selectivity between implanted and pristine SiN surface. 
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