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Moderators: Alokik Kanwal, NIST Center for Nanoscale Science and 
Technology, Nikolai Klimov, National Institute of Standards and Technology 

8:00am NS+AN+EM+MN+MP+RM-TuM1 Parametric Nonlinear 
Interactions in Nanofabricated Silicon-based Photonics, Amy Foster, Johns 
Hopkins University INVITED 

High optical confinement waveguides on integrated platforms enable 
nonlinear optical interactions with low power levels. The third-order 
nonlinear susceptibility, a modification of a material’s permittivity due to 
an applied optical field, exists in all materials, and is an intensity-dependent 
process leading to third-order parametric effects. Harnessing the high 
optical intensities enabled by high confinement waveguides allows 
standard semiconductor materials to become power-efficient parametric 
nonlinear optical devices that can operate with powers in the mW range. 
The optical confinement of a waveguide also enables control over the 
waveguide’s dispersion, allowing for phase-matching of the parametric 
processes thereby improving its operating bandwidth. Using standard 
nanofabrication techniques, integrated photonic devices can be tailored in 
both geometry at the nanoscale, and in magnitude of their third-order 
susceptibility through modification of their material properties. In this talk, 
we will discuss a variety of parametric nonlinear optical demonstrations in 
silicon-based waveguides including optical parametric amplification and 
oscillation, phase-sensitive amplification, and frequency conversion and 
comb generation. Furthermore, we will discuss these devices for a variety 
of applications including optical signal processing, spectroscopy, and 
security. 

8:40am NS+AN+EM+MN+MP+RM-TuM3 Ultrafast Optical Pulse Shaping 
using Dielectric Metasurfaces, Amit Agrawal, S. Divitt, W. Zhu, C. Zhang, 
H.J. Lezec, NIST Center for Nanoscale Science and Technology INVITED 

Since the invention of femtosecond pulsed lasers, the field of ultrafast 
optical science and technology has seen significant progress in the 
generation and characterization of ultrashort optical pulses. 
Complimentary to development in generation and characterization 
techniques, arbitrary temporal shaping of optical pulses has become an 
integral part of the field. Fourier-transform pulse shaping is the most 
widely adopted approach that entails parallel modulation of spatially 
separated frequency components to achieve the desired pulse shape. 
Recently, dielectric metasurfaces have emerged as a powerful technology 
for arbitrary control over the amplitude, phase, or polarization of light in a 
single, compact optical element. Here, we experimentally demonstrate 
shaping of sub-10 fsec ultrafast optical pulses using a centimeter-scale 
silicon metasurface acting as both amplitude and phase modulation mask. 
The deep-subwavelength silicon nanostructures, positioned with 
nanometer precision, are individual optimized to provide accurate 
amplitude and phase modulations to each frequency component. Masks of 
this type offer a lower cost, larger size, higher resolution, high diffraction 
efficiency, high damage threshold method for controlling ultrafast pulses. 

9:20am NS+AN+EM+MN+MP+RM-TuM5 Single-Particle Nanophotonics 
and Materials Investigations with Optical Microresonator Spectrometers, 
Erik Horak, University of Wisconsin - Madison; K.D. Heylman, K.A. Knapper, 
M.T. Rea, F. Pan, L.T. Hogan, R.H. Goldsmith, University of Wisconsin-
Madison INVITED 

Optical microresonators have achieved impressive sensitivities in a range of 
experimental modalities. We leverage the exquisite sensitivity of 
microresonators to enable highly sensitive spectroscopic characterization 
of objects on the surface of the resonator. In this way, not only can single 
particles be detected and identified, but fundamental properties of 
interrogated systems can be studied, opening a path to mechanistic studies 
and label-free chemical identification. 

Our photothermal-based technique employs a two-beam geometry. A 
fiber-coupled (probe) beam records the whispering-gallery mode (WGM) 
resonance wavelength via evanescent coupling through a tapered fiber, 
while a second free-space (pump) beam heats absorbing particles or 
molecules on the surface of the microresonator, shifting the WGM 
resonance. In essence we use the microresonator as a nearfield 
thermometer to measure dissipated heat upon optical excitation. To 
circumvent the photothermal background of the popular SiO2 on Si toroidal 
resonators, we have developed an all-SiO2 microtoroidal resonator, 

unlocking visible wavelengths to interrogation. We further employed a 
double-modulation technique through simultaneous Pound-Drever-Hall 
locking of the probe beam and amplitude modulation of the pump beam to 
reach sub-100 Hz or single attometer resonance shift resolution. This 
corresponds to signals much smaller than that predicted from a single-
molecule, and thus represents an avenue toward single-molecule 
absorption spectroscopy. 

We demonstrate this technique by examining gold nanorods (AuNR), which 
validate our experimental setup with near-diffraction limited photothermal 
maps, Lorentzian absorption spectra with stochastic center wavelengths, 
and single dipole polarization dependences. Further, AuNRs in close 
proximity to microresonator WGMs display signatures of photonic-
plasmonic interactions, a forest of Fano resonances decorating the 
plasmonic absorption feature. This platform offers a facile methodology to 
study these complex interactions, with thermal annealing of the AuNRs 
producing highly controllable tuning of Fano resonances. Applying our 
platform to conductive polymers (CP), we have begun to understand the 
fundamental properties that enable the high conductivity from a bottom-
up nanoscale perspective. We examine the interplay between 
homogeneous and heterogeneous broadening, measure the long-range 
ordering, and determine relative surface orientation of CPs. These 
examples firmly demonstrate the utility of our platform to go beyond 
sensing allowing exploration of novel characteristics in complex systems 
and potentially the observation of chemical and biochemical dynamics. 

11:00am NS+AN+EM+MN+MP+RM-TuM10 Optomechanical Interactions 
for Metrology and Signal Processing, Karen Grutter, The Laboratory for 
Physical Sciences INVITED 

Imprinting radio-frequency (RF) signals on optical carriers has a broad 
range of applications from metrology to communication and has been 
accomplished in bulk components using a variety of techniques. Achieving 
this functionality on a chip could broaden the potential application space, 
but the bulk frequency generation methods do not translate directly to the 
nanoscale. A number of methods have been proposed for on-chip 
frequency generation, including various sources of electro-optic 
modulation, comb generation via material nonlinearities in 
microresonators, and optomechanical/opto-acoustic interactions. In this 
talk, we will discuss the features of these sources, with particular focus on 
optomechanical interactions. 

One potential phenomenon enabling opto-acoustic frequency generation is 
stimulated Brillouin scattering (SBS), which is essentially an interaction 
between propagating phonons and photons. This effect has been 
demonstrated in optical fibers, and recent results in on-chip waveguides 
show promise. One of the challenges with SBS on chip is that gain is 
dependent on long interaction lengths. 

This interaction can be enhanced by moving to a different domain of 
phonon/photon interaction: cavity optomechanics. In an optomechanical 
cavity, the characteristics of the generated frequency are dependent on 
the mechanical eigenmode. We will demonstrate the relationship between 
mechanical quality factor and phase noise in ring optomechanical 
oscillators. 

The optomechanical interaction can be optimized beyond that of ring 
resonators by further confining optical and mechanical modes using 
photonic and phononic crystals. We have designed and fabricated Si3N4 
nanobeam optomechanical crystals with ~4 GHz mechanical breathing 
modes. The increased optomechanical coupling of these nanobeams 
confers high sensitivity to displacement, which could be exploited for 
various metrology applications, which we will discuss. 

Further enhancement of the optomechanical coupling can be achieved by 
modifying the optomechanical crystal geometry to support an optical slot 
mode. We have designed and fabricated ~3 GHz-frequency slot-mode 
optomechanical crystals in Si3N4. In addition to increasing the 
optomechanical coupling compared to the single-nanobeam device, this 
structure has increased versatility, enabling interaction with other stimuli 
and modalities. We have integrated NEMS actuators with a slot-mode 
optomechanical crystal, and used these actuators to tune the optical mode 
and lock it to an external, fixed laser wavelength. This increases the 
practicality of this device, enabling longer-term measurements and stabler 
frequency sources. 
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11:40am NS+AN+EM+MN+MP+RM-TuM12 Cold-atom based Sensors and 
Standards, Stephen Eckel, D.S. Barker, J.A. Fedchak, N.N. Klimov, E. 
Norrgard, J. Scherschligt, National Institute of Standards and Technology
 INVITED 

In this talk, I will describe our recent efforts to merge nanophotonics, ultra-
high vacuum, and atomic physics together to build a new generation of 
cold atom sensors and standards. In particular, I will focus on our recent 
realization of a single-beam system for cooling lithium atoms, an atomic 
species recently identified as an excellent candidate for a primary vacuum 
standard. Our system uses a triangular-shaped nanofabricated diffraction 
grating to produce the necessary beams for a magneto-optical trap that 
cools and slows the atoms. Unlike systems that use rubidium or cesium, 
which can be loaded from a vapor, lithium introduces additional 
complications because it must be produce from a thermal source requiring 
loading of the magneto-optical trap from behind the chip. Finally, I will 
conclude by talking about other trap geometries that we are pursuing, how 
they benefit vacuum and inertial sensors, and what the synergy of 
integrated nanophotonics, high-vacuum and atomic physics might be able 
to bring. 
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