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8:20am NS+2D+AN+MN+MP+SE-WeM2 The Collective Behavior of Large 
Ensembles of Coupled MEMS Cantilevers with Varying Natural 
Frequencies, Christopher Wallin, National Institute of Standards and 
Technology, Center for Nanoscale Science and Technology; N. Dick, Tel Aviv 
University, Israel; R. De Alba, D.A. Westly, National Institute of Standards 
and Technology, Center for Nanoscale Science and Technology; S. Grutzik, 
Sandia National Laboratories; A.T. Zehnder, R.H. Rand, Cornell University; 
V.A. Aksyuk, National Institute of Standards and Technology, Center for 
Nanoscale Science and Technology; S. Krylov, Tel Aviv University, Israel; 
B.R. Ilic, National Institute of Standards and Technology, Center for 
Nanoscale Science and Technology 

The collective behavior of nonlinear, coupled micro- and nano-
electromechanical (M/NEMS) resonators has been shown to exhibit a host 
of nontrivial dynamics including abrupt pattern switching, multistability, 
hysteresis, intrinsically localized modes, and synchronization. Additionally, 
M/NEMS resonator arrays are extremely responsive to environmental 
perturbations making them excellent candidates for sensing applications 
when operated linearly. With our work, we investigate the collective 
dynamics of coplanar interdigitated arrays of prismatic microcantilevers 
operating in both the nonlinear and linear regimes. 

Two opposing, partially interdigitated cantilever arrays with 100 cantilevers 
apiece were fabricated using a silicon–on–insulator wafer. The device 
consists of a unique geometry in which each array has cantilever lengths 
expanding linearly across the device in opposite directions giving a 
distribution of natural frequencies. The arrays were engineered to allow for 
large scale, nonlinear out-of-plane beam deflections through the removal 
of the entire silicon handle layer beneath the active array area. 

For sufficiently large drive amplitudes, the resonators begin oscillating via 
combination parametric resonance (CPR) across the entire array. The CPR 
driven oscillations occur across a broad frequency band. The tunable 
coupling between nearest-neighbor cantilevers through fringing 
electrostatic fields provides a mechanism to vary the CPR response. Due to 
the sizable deflections, the device’s nonlinearities are apparent including 
hysteresis effects. Our experimental results are supported and expanded 
by the development of a reduced order model based on the Galerkin 
decomposition which generates the leading features of our data including 
the CPR band. 

When operating in the linear regime, the natural modes of the array have 
localized characteristics whereby a limited number of beams oscillate at 
each of the natural mode frequencies. Operating the device at higher 
harmonics increases mode separation as the propagation bands stretch. 
The distinct resonant peak separation coupled with the spatially confined 
modal response make higher harmonic operation of tailored, variable 
length cantilever arrays well suited for a variety of resonant based sensing 
applications. 

8:40am NS+2D+AN+MN+MP+SE-WeM3 Piezoelectric Optomechanical 
Systems, Krishna Coimbatore Balram, University of Bristol, UK INVITED 

Nanoscale optomechanical systems, which rely on the strong interactions 
between co-localised optical and mechanical modes in nanoscale cavities, 
have been explored for a wide variety of applications ranging from sensing 
to signal transduction [Aspelmeyer et al., Rev. Mod. Phys. (2014)]. In this 
talk, I will discuss piezoelectric optomechanical platforms for efficient 
signal transduction between the radio frequency (RF) and optical domain. 
We use GaAs as our model platform (Balram et al., Optica (2014), Nature 
Photonics (2016), Phys. Rev. Applied (2017)) and discuss some of the 
research opportunities and challenges in this field, especially as we move 
towards higher mechanical frequencies (> 10 GHz). 

9:20am NS+2D+AN+MN+MP+SE-WeM5 Absolute Deflection 
Measurements in a MEMS/NEMS Fabry-Perot Interferometry System, 
Roberto De Alba, C.B. Wallin, G. Holland, National Institute of Standards 
and Technology; S. Krylov, Tel Aviv University, Israel; B.R. Ilic, National 
Institute of Standards and Technology 

Micro- and nano-electromechanical systems (MEMS/NEMS) are among the 
most sensitive devices for detection of ultra-weak forces, masses, and 

displacements. The small scale of these structures affords them very high 
frequencies (MHz to GHz), high quality factors, rich nonlinear phenomena, 
and many other beneficial traits that make them ideal as sensors and 
testbeds of fundamental physics. Fabry-Perot laser interferometry is a 
widespread and robust technique for probing MEMS/NEMS devices 
because it is non-invasive and provides exceptional motion sensitivity (≈ 1 
pm/Hz1/2) from DC to roughly 100 MHz. This technique utilizes the silicon 
substrate beneath the MEMS/NEMS device as a static reference mirror; 
doing so provides common-mode noise rejection in contrast to 
interferometers that use an external reference mirror. Furthermore, this 
technique is compatible with a wide range of MEMS/NEMS materials, from 
common insulators and conductors to graphene and other atomically-thin 
membranes. 

Despite the many strengths of this experimental technique, it suffers from 
two main drawbacks. Firstly, the measured signal becomes highly nonlinear 
for device displacements larger than λ/4, where λ is the laser wavelength. 
Secondly, because the silicon backplane is immovable, there is no simple or 
established technique for calibrating device motion. As such, published 
results utilizing this setup typically report deflection in “arbitrary units.” In 
this work, we focus on fully characterizing the nonlinear aspects of a 
MEMS/NEMS Fabry-Perot interferometer and developing a generalized 
approach to calibrate device motion based the wavelength of light. We will 
demonstrate how to quickly and accurately determine both static and 
dynamic MEMS/NEMS deflection by measuring reflected laser power in the 
time domain. We will further show how a single calibration (made in the 
large-amplitude regime) can be applied to subsequent measurements 
taken at lower amplitudes as well as to measurements taken in the 
frequency domain (e.g. by a lock-in amplifier). Lastly, we will demonstrate 
the capability of imaging the first three vibrational modes of a MEMS 
cantilever by using a scanning laser. 

9:40am NS+2D+AN+MN+MP+SE-WeM6 Silicon on Insulator 
Electrostatically Actuated Bistable Cantilevers for Resonant 
Displacement/Acceleration Sensing, O. HaLevy, E. Benjamin, N. Krakover, 
Y. Kessler, Slava Krylov, Tel Aviv University, Israel 

Resonant accelerometers incorporating vibrating beams demonstrate 
higher sensitivity and better robustness when compared to their statically 
operated counterparts. Electrostatic softening of the beams 
electrostatically coupled to the proof mass allows to enhance sensitivity of 
the resonant accelerometers. The displacement of the proof mass affects 
the gap between the mass and the beam and results in the beam’s 
frequency change, which is maximal in the vicinity of the critical limit points 
of the voltage-deflection curve. The use of the snap-through buckling for 
this purpose is attractive since it is fully reversible and does not involve 
contact. While double-clamped curved bistable beams designed to 
demonstrate snap-through behavior can serve as resonant acceleration 
sensors [1], they suffer from high sensitivity to temperature and residual 
stress. 

In this work we report on a design and fabrication of an electrostatically 
actuated bistable resonant cantilever [2], which demonstrates low 
sensitivity to the temperature and to the residual stress. The concept is 
based on the tailoring of the actuating force in such a way that the beam in 
its initial “as fabricated” configuration is positioned in the vicinity of the 
critical point. This is achieved by designing the actuating electrodes to be 
significantly thicker that the beam. Our reduced order (RO) Galerkin and 
coupled finite elements (FE) models results show that the frequency to 
deflection sensitivity of the L = 150 µm long, h = 16 µm wide and d = 1 µm 
thick cantilever can reach 20 Hz/nm. This is equivalent to the frequency to 
acceleration sensitivity of 388 Hz/g, obtained for the case of a 4 mm × 4 
mm × 20 µm proof mass. 

While the model results are promising, fabrication of the device 
incorporating the beams and the electrodes of the different thicknesses is 
challenging. We demonstrate fabrication of the 50 µm thick electrodes and 
≈6 µm thick cantilevers from the same device layer of a Silicon on Insulator 
(SOI) wafer. Two-stage deep reactive ion etching (DRIE) process was used 
for an initial patterning of the electrodes and of the cantilever and for the 
thinning of the beams. We discuss the details of the fabrication process 
and preliminary experimental results. 

[1] N. Krakover, B. R. Ilic and S. Krylov, “Displacement Sensing Based on 
Resonant Frequency Monitoring of Electrostatically Actuated Curved Micro 
Beams,” J. Micromech. Microeng., 26, pap. 115006, 2016. 

[2] N. Krakover, S. Krylov, “Bistable Cantilevers Actuated by Fringing 
Electrostatic Fields,” ASME Journal of Vibration and Acoustics, 139(4), 
040908-040908-10, 2017. 
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11:00am NS+2D+AN+MN+MP+SE-WeM10 Electron-Photon-Phonon 
Hybrid Systems Based on Compound Semiconductor Mechanical 
Resonators, Hiroshi Yamaguchi, NTT Basic Research Laboratories, Nippon 
Telegraph and Telephone Corporation, Japan INVITED 

The use of compound semiconductor heterostructures as the elastic 
materials in the fabrication of micro/nanomechanical resonators has 

advantages, such like the improvement of mechanical properties through 
strain engineering, optomechanical transduction through carrier-mediated 

coupling, and piezoelectrically controllable nonlinearity [1]. The hybrid 
properties play the essential role in the operation where the different 

excitations of phonons, photons, and electrons are mutually interacted. In 
this invited talk, I will review our recent activities studying the electronic 
[2], photonic [3], and phononic [4] functions in GaAs-based mechanical 

resonators. 

[1] H. Yamaguchi, Semicond. Sci. Technol. 32, 103003 (2017). 

[2] Y. Okazaki, I. Mahboob, K. Onomitsu, S. Sasaki, and H. Yamaguchi, 
Nature Commun. 7, 11132 (2016). 

[3] H. Okamoto, T. Watanabe, R. Ohta, K. Onomitsu, H. Gotoh, T. Sogawa, 
and H. Yamaguchi, Nature Commun. 6, 8478 (2015). 

[4] M. Kurosu, D. Hatanaka, K. Onomitsu, and H. Yamaguchi, Nature 
Commun. 9, 1331 (2018). 

11:40am NS+2D+AN+MN+MP+SE-WeM12 Size Dependent Mechanics of 
Elastomers, Le Li, N. Alsharif, K.A. Brown, Boston University 

Elastomers are fascinating materials owing to the fact that their mechanical 
properties are dictated by entropy. Due to their low modulus, chemical 

compatibility, and ease of processing, they are widely applied in fields from 
soft lithography to medical devices. While it is well accepted that they 

exhibit fascinating size-dependent mechanical properties when confined to 
thin films, the structure-property relationships that govern confined 

elastomers are difficult to unambiguously determine due to the mechanical 
influence of rigid support structures and unavoidable contributions from 

adhesion. As a result, a consensus regarding the moduli of elastomeric thin 
films has not emerged. Here, we present a combined computational and 

experimental approach to measure the true mechanical properties of thin 
elastomer films. First, we utilize extensive finite element simulations to 

determine a correction to the Hertzian contact model that depends upon a 
dimensionless film thickness and the polymer Poisson’s ratio. In order to 
verify this correction, films composed of three different thermoplastics 
were studied using an atomic force microscopy (AFM) nanoindenting. 
Interestingly, all three were observed to soften when confined to films 
thinner than 100 nm, in agreement with literature reports of buckling 

experiments. To explore softer elastomeric materials that exhibit 
categorically different behavior, we extended this correction to the 

Johnson-Kendall-Roberts (JKR) model that considers adhesion in contact 
mechanics. Elastomer thin films with different crosslink densities were 
studied using AFM nanoindentation and finite element simulation to 

determine their moduli. We observed a drastic stiffening on all elastomeric 
films when they were confined to sub-micrometer thicknesses. More 

importantly, modulus of all sub-100 nm elastomer films converges to the 
same trend regardless of bulk crosslink density. We present a hypothesized 
molecular model explaining this behavior. These results shed new light on 

the nanomechanics of elastomers and provide a general process for 
exploring size-dependent mechanics in polymers. 
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