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IoT Session: MEMS for IoT: Chemical and Biological Sensing 
Moderators: Robert Davis, Brigham Young University, Sushma Kotru, The 
University of Alabama 

2:20pm MN+2D+AN+NS-WeA1 BioMEMS for Eye Applications, Yu-Chong 
Tai, California Institute of Technology INVITED 

The field of Micro-Electro-Mechanical Systems (MEMS) has advanced 
tremendously for the last 20 years. Most noticeably, however, the field has 
mostly advanced in microsensors such as pressure sensors, accelerometers, 
gyros, microphones for cell phone and smart instrumentation applications. 
Looking forward though, in my opinion, one future direction of 
MEMS/NEMS is for micro biomedical devices. Among many possible 
biomedical applications, one challenging but promising branch is micro 
implants. Why micro implants? Body tissues (especially neurons), once 
severely damaged, do not repair or regenerate easily and often leave 
behind permanent debilitating deficits. Engineering implant technologies to 
interface intact tissues and/or to replace defective functions have 
continued to be the main solutions for many diseases. As our world is 
facing more severe aging population problems, significant growth in 
implant applications is foreseeable. As a matter of fact, there are already 
many existing commercially available implants such, as pacemakers and 
cochlear implants, but they all have a lot to improve. For examples, 
cardiovascular implants like defibrillator and pacemakers are still bulky, 
mechanically rigid, power hungry, and functionally limited. The future 
implants should be even smaller, flexible, power efficient and more 
versatile so that they can be used at places not possible before. This talk 
will review the research of implants done at the Caltech MEMS lab. More 
specifically, this talk will focus on bioMEMS implant devices to treat eye 
diseases. Examples of devices will cover the four major ophthalmic 
diseases, i.e., cataract, glaucoma, age-related macular disease and diabetic 
retinopathy that make of close to 80% of world blindness. It is believed that 
BioMEMS can also have many other opportunities for other organs in our 
body too. 

3:00pm MN+2D+AN+NS-WeA3 Real-Time, Single Cell, Size Measurements 
using a Facile, Multimode Microwave Resonator, Selim Hanay, H. 
Aydogmus, A. Secme, H.S. Pisheh, M. Kelleci, U. Hatipoğlu, Bilkent 
University, Turkey 

In this study, a facile microwave sensor is designed and fabricated to detect 
transient cells one by one and extract their morphological and electrical 
properties in real time, without labeling. Multiple modes can be measured 
by multiplexing the electronic frequencies to obtain multiple analytic 
parameters at the same time. Our simple fabrication technique obviates 
the need to complex fabrication process. 

A microwave sensor, in the form of a microstrip line resonator, is 
constructed by fixing copper tape at the back and the front side of a 1-mm 
thick glass slide. The backside is covered entirely with the tape to form a 
ground plane; on the front side, a copper tape was thinned within a few 
mm, extended across the slide and terminated with SMA feed through. On 
the front side, just below the copper tape, five capillary tubes are placed to 
transport the cells into the active sensing region. Microwave signals are 
transmitted through the two SMA ports at the end of the glass slide, 
perpendicular to the flow. The resonator is formed by electrically shorting 
the input/output ports. An initial characterization of the device is done by 
using spectrum analyzer so that its first and second order mode 
frequencies are obtained. 

A digital phase-locked loops (PLL) measurement system with PI controller 
was constructed to track the resonance frequencies of the first two modes 
simultaneously in real-time. The PLL system tracks the two modes of the 
microstrip line resonator to sense the frequency shifts originating from the 
passage of the cells in the capillary. 

As a proof of concept, initial PLL measurements were done with DI water. 
As water flows through the tube, frequency shifts around 100 kHz were 
observed in both modes. Later on, wildtype Skbr3 breast cancer cells were 
flown through the same capillary. Frequency shifts in both modes were the 
responses of the resonator to the passage of the Skbr3 cells beneath 
microstrip-line. The ratio between the first and second mode frequency 
shifts can be used determine the location of each cell by two-mode theory. 
The analyzed data indicates almost a constant slope, verifying the 

positional response of the sensors. Moreover, the size distribution of the 
cells is cumulated around a contour line for constant size as expected. 

Earlier, we had detected single cells and distinguished different oncogenic 
cell lines using a PDMS based device. With this work, single-cell detection 
and sizing are accomplished with a device paradigm that does not require 
any lithography, metal deposition under vacuum or precise alignment of 
electrodes. 

We acknowledge funding from European Research Council (ERC) Starting 
Grant (REM, 758769). 

4:20pm MN+2D+AN+NS-WeA7 Magnetic Microsystems for 
Communications, Rob Candler, University of California at Los Angeles
 INVITED 

We are witnessing a rapid expansion of embedded devices (IoT) that have a 
variety of functions but a common requirement, to communicate with one 
another. These devices will be connected on a scale previously unseen, and 
they will therefore require an approach to efficiently generate and receive 

electromagnetic waves in a small form factor. One such approach is to 
rethink the way electrically small antennas operate, shifting from a current-
based antenna to a voltage-controlled multiferroic antenna. Multiferroics 
are material systems with coupled magnetic and electrical properties, and 
they offer a new route for the miniaturization of magnetic field-coupled 

devices. Multiferroic systems allow for the conversion of magnetic flux to a 
voltage (and vice versa) without the need of a wire loop, avoiding 

inefficiencies due to Ohmic loss. In particular, strain-coupled 
heterostructures of magnetostrictive and piezoelectric materials have 

received much attention, as they can offer magneto-electric coupling many 
order of magnitudes higher than found in single-phase materials. A rapidly 
emerging research space in multiferroics is the development of miniature 

wireless devices, such as antennas and energy harvesters, taking advantage 
of the efficient flux-to-voltage conversion of multiferroics. In this talk, I will 

present work showing the impact of multiferroic coupling on the 
ferromagnetic resonance in GHz Bulk Acoustic Wave resonators, as well as 

investigations in frequency mixing from non-linear multiferroic affects. 
These results are all in support of our goal create a microscale multiferroic 

antenna that is orders of magnitude more efficient than its classical 
antenna counterpart. 

Furthermore, continued miniaturization of existing and emerging 
components that use magnets (atomic clocks, quantum computing, 

magnetic memory) will increase their sensitivity to external magnetic fields 
as well as the crosstalk between components. To address this need, we are 
developing techniques for on-chip magnetic shielding using multiple layers 
of permalloy. We will present recent results showing microscale magnetic 

shields fabricated by electroplating multiple permalloy layers into molds, as 
well as milliscale shields that were conformally electroplated on 3D printed 

sheaths. 

5:00pm MN+2D+AN+NS-WeA9 MEMS-Based Resonant Sensors for IoT 
Applications, Oliver Brand, M. Kim, P. Getz, Georgia Institute of Technology
 INVITED 

The presentation discusses resonant microsensors, in which the measurand 
affects a characteristic of the resonance behavior of a resonant 

microstructure or a resonant circuit, such as its resonance frequency or 
quality factor. Resonant sensing is a very versatile sensing approach and 

can be adapted to a large variety of physical, chemical and biological 
measurands. Especially when using the resonance frequency as the sensing 

signal, high resolution is achievable since frequencies can be measured 
accurately. The presentation will highlight two possible implementations of 

resonant chemical sensors for Internet of Things (IoT) applications, a 
cantilever-based electromechanical resonator and a purely electrical L-C 

resonance circuit. 

The first example is an electro-mechanical resonant chemical sensor based 
on a silicon hammerhead structure coated with a polymeric sensing film for 

the detection of volatile organic compounds. The presentation will 
highlight how proper selection of the resonance mode, in this case an in-

plane vibration mode, and device geometry can improve device 
performance and how fast temperature modulations of the resonant 

sensors enable the observation of signal transients that contain additional 
analyte information. The sensors are fabricated using a CMOS-compatible 
bulk-micromachining process, have resonance frequencies between 400-

800kHz and achieve sub-ppm limits of detection for select analytes. 

The second example is a purely electrical resonant chemical sensor in form 
of a flexible and stretchable L-C (inductor-capacitor) sensor, which is 

battery free and can be wirelessly interrogated. To achieve stretchable 
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sensor characteristics, the spiral inductor and interdigitated capacitor 
structures are formed by a liquid metal, eutectic gallium-indium (EGaIn). A 

subtractive reverse stamping technique is used to form the conducting 
liquid metal lines with dimensions as small as 2µm inside PDMS 

microchannels and a 3D heterogeneous integration technique is applied to 
vertically stack and electrically interconnect the capacitor and inductor 
structure. Liquid and gaseous analytes change the capacitance and are 
detected by wirelessly measuring the resonance frequency of the L-C 

circuit around 143MHz. 

5:40pm MN+2D+AN+NS-WeA11 Etched Silicon Microcolumn For Tunable 
Thermal Gradient Gas Chromatography, Aaron Davis, P. Schnepf, P.S. Ng, 
R.R. Vanfleet, R.C. Davis, B.D. Jensen, Brigham Young University 

The connection of the digital and physical world will be strengthened by 
chemical sensors that can measure complex mixtures of molecules. Gas 
chromatography is the gold standard for identification of volatiles and 
gases. Conventional gas chromatography systems have unparalleled 
resolution, but are large and power intensive. Microcolumn gas 
chromatographs are more portable but have dramatically reduced 
resolution. Combining the resolution of conventional systems with the size 
factor of micro systems is important for improving the affordability and 
portability of high performance gas analysis. Recent work has 
demonstrated feasibility of high resolution separation of gases in a 
benchtop-scale short-column system by controlling thermal gradients 
through the column. In order to further decrease the size of a gas 
chromatography system, microfabrication techniques were used to 
demonstrate the fabrication of a thermally controllable micro-scale gas 
chromatographic column with a small footprint (3 cm square). To fabricate 
microcolumns we are using deep-reactive-ion-etching, nickel evaporation, 
and wafer bonding. The design of the 20 cm column utilizes 21 individually 
controllable thin film heaters and solid conduction cooling to produce the 
desired thermal profile. 
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