Thursday Morning, October 25, 2018

MEMS and NEMS Group

Room 202B - Session MN+2D+AN+MP+NS-ThM

Optomechanics and 2D NEMS

Moderator: Max Zenghui Wang, University of Electronic Science and Technology of China

8:00am MN+2D+AN+MP+NS-ThM1 Towards Microwave to Telecom Wavelength Quantum Information Transfer using Cavity Optomechanics, John Davis, University of Alberta, Canada INVITED

The past few years have seen the rapid maturation of quantum information processors, particularly in the category of superconducting microwave circuits. With claims from leading companies that they will commercialize quantum processors in the next five years, we must wonder what quantum technologies should be developed in tandem to fully utilize these processors. For example, we are all acutely aware that while our personal computers are powerful, they are considerably more useful and interesting when networked together. So how can we likewise network quantum processors? Especially since the microwave signals of superconducting processors cannot be transmitted at room temperature without thermal decoherence. What if instead, one could link superconducting processors together through existing fiber-optic networks, which are already capable of long distance quantum information transfer? Hence the development of a transducer of quantum information from the microwave to telecom domain has become highly desirable. I will describe the current state of microwave to optical transducers, and how our lab is working towards this goal. Specifically, I will discuss the progress and challenges associated with the development of fiber-coupled telecom-wavelength cavity optomechanical resonators, and 3D superconducting microwave cavities, operating at millikelvin temperatures. I will also discuss ongoing collaborations that could enable implementation of quantum information transducers in a large-scale fiber network in Alberta.

11:20am MN+2D+AN+MP+NS-ThM11 Reconfigurable Resonant Responses in Atomic Layer 2D Nanoelectromechanical Systems (NEMS), Zenghui Wang, University of Electronic Science and Technology of China; R. Yang, P.X.-L. Feng, Case Western Reserve University

Atomic layer semiconducting crystals have emerged as a new class of twodimensional (2D) materials, exhibiting great promises for both fundamental research and technological applications. Their outstanding electromechanical properties make these materials ideal for constructing novel 2D NEMS, providing opportunities for leveraging their unique device properties across multiple information-transduction domains, at scales down to individual atomic layers. One particularly interesting category of 2D NEMS is 2D nanoelectromechanical resonators, which hold potentials for making the next generation RF signal transduction and processing components, with miniaturized size, ultra-low power consumption, and compatibility with transparent and flexible circuits.

Towards future applications in the 5G era, multi-band RF signal handling capability is desired, as the number of bands each mobile device need to have access to significantly increases, and it would be impractical to simply increase the number of RF components that can only function under one RF frequency, as the space required for mounting such components scales with the number of bands. Therefore, ultralow-power tunable and reconfigurable RF devices that can adapt to different frequencies would be one solution to this challenge.

Here we present experimental demonstration of nanomechanical resonators based on layered MoS₂ atomic crystals that have reconfigurable resonant responses. By carefully studying the temperature-dependent frequency response in such MoS₂ resonators[1], we discover clear, repeatable hysteretic behavior as the device temperature is changed[2]. Leveraging this phenomenon, we achieve switchable resonance frequency *f*_{res} in such devices by using heating and cooling pulses. Specifically, for an example MoS₂ resonator, during heating pulses, the *f*_{res} decreases to ~20MHz. Once the device recovers to room temperature, *f*_{res} stabilizes at ~26MHz. During cooling pulses, *f*_{res} increases to ~29MHz, and upon reverting to room temperature *f*_{res} stays at ~24.5MHz, which is clearly different than the other room temperature state. Our findings suggest that such atomic-layer MoS₂ NEMS resonators could be used towards developing reconfigurable RF components whose frequency response can be switched between different states.

[1] R. Yang, et al., *IEEE UFFC, pp 198-201,* 2015. [2] Z. Wang, et al., *IEEE UFFC, pp* 783-786, 2015.

11:40am MN+2D+AN+MP+NS-ThM12 Cavity Optomechanics: Dynamics and Applications, *Eyal Buks*, Israel Institute of Technology, Israel INVITED The field of cavity optomechanics deals with a family of systems, each composed of two coupled elements. The first one is a mechanical resonator, commonly having a low damping rate, and the second one is an electromagnetic cavity, which typically is externally driven. Both radiation pressure and bolometric force can give rise to the coupling between the mechanical resonator and the cavity. In recent years a variety of cavity optomechanical systems have been constructed and studied, and phenomena such as mode cooling, self-excited oscillation, and optically induced transparency have been investigated. The first part of the talk will be devoted to some dynamical effects including synchronization and intermittency. In the second part some applications of optomechanical cavities for sensitive sensing will be discussed.

Author Index

Bold page numbers indicate presenter

- B -Buks, E.B.: MN+2D+AN+MP+NS-ThM12, 1 - D -Davis, J.P.: MN+2D+AN+MP+NS-ThM1, 1 - F --Feng, P.X.-L.: MN+2D+AN+MP+NS-ThM11, 1 - W --Wang, Z.: MN+2D+AN+MP+NS-ThM11, 1