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Advanced Imaging and Structure Determination of 
Biomaterials Research 
Moderators: Dan Graham, University of Washington, Axel Rosenhahn, 
Ruhr-University Bochum, Germany 

1:20pm BI+AS+IPF+MN-MoA1 NMR Relaxometry as a Medical Diagnostic, 
Michael J. Cima, Massachusetts Institute of Technology INVITED 

This talk will describe the diagnostic capabilities of magnetic resonance 
imaging (MRI) when brought to the patient bedside. Rather than imaging, 
NMR can be used for important chemical/physiologic diagnostic endpoints. 
Two will be discussed here; quantifying fluid overload and measurement of 
hypoxia within tumors. Assessment of intra- and extra-vascular volume is 
integral in managing patients with heart, liver, and kidney disease as 
volume status is closely linked to mortality. Commonly used determinants 
of volume status, such as physical exam and ultrasonography, lack 
sensitivity and specificity and require expertise in clinical practice. This talk 
reports on nuclear magnetic resonance (NMR) methods to a portable and 
clinically useful device. A clinical study with hemodialysis patients and age-
matched healthy controls was performed at MGH. The Τ2 relaxation times 
of study participants’ legs were quantified at multiple time points with both 
a 1.5T clinical MRI scanner and a custom 0.27T single-voxel MR sensor. The 
results showed that first sign of fluid overload is an increase in the relative 
fraction of extracellular fluid in the muscle. The relaxation time of the 
extracellular fluid in the muscle eventually increases after more fluid is 
accumulated. Importantly, these MR findings occur before signs of edema 
are detectable on physical exam. Solid tumors are often hypoxic and 
characterized by an extreme lack of oxygen. Tumor hypoxia imparts 
significant negative outcomes for patients but is highly variable within 
cancer types and patient populations. Many of these poor clinical 
outcomes can be tied to hypoxic-induced radiotherapy resistance. 
Resistance to radiotherapy in hypoxic regions can be overcome by 
increasing the dose delivered but exposure limitations of healthy tissue and 
organs must be considered. The lack of a viable quantitative clinical oxygen 
measurement method prevents safe dose escalation in these patient 
populations. Here we report on a silicone-based quantitative oxygen 
sensor. The MRI contrast of this material depends on dissolved oxygen. 
Thus, the material functions as a first of its kind solid-state contrast agent. 
The sensor leverages the existing MRI hardware, which is part of the 
current clinical work flow, to map tumor oxygen content. This information 
can then be integrated into the dose planning process clinicians currently 
conduct to selectively and safely boost dose to low oxygen tumor 
subvolumes. This sensor is approved by the institutional review board at 
Dana Farber Cancer Center for a clinical trial in patients locally advanced 
cervical cancer. 

2:00pm BI+AS+IPF+MN-MoA3 Direct Observation of Cell Signaling 
Proteins Interacting with a Model Cell Membrane by Sum Frequency 
Generation Vibrational Spectroscopy, T.W. Golbek, Oregon State 
University; T. Weidner, Aarhus University, Denmark; C.P. Johnson, Joe Baio, 
Oregon State University 

Proteins that contain C2 domains are involved in a variety of biological 
processes including encoding of sound, cell signaling, and cell membrane 
repair. Of particular importance is the interface activity of the C-terminal 
C2F domain of otoferlin due to the pathological mutations known to 
significantly disrupt the protein’s lipid membrane interface binding activity, 
resulting in hearing loss. Therefore, there is a critical need to define the 
geometry and positions of functionally important sites and structures at 
the otoferlin-lipid membrane interface. Here we describe the first in situ 
probe of the protein structure of otoferlin’s C2F domain interacting with a 
cell membrane surface. To identify this protein’s structure at the lipid 
interface we applied sum frequency generation (SFG) vibrational 
spectroscopy and coupled it with simulated SFG spectra to observe and 
quantify the otoferlin C2F domain interacting with model lipid membranes. 
A model cell membrane was built with equal amounts of phosphoserine 
(PS) and phosphocholine (PC). SFG studies that examined the ordering of 
the lipids that make up the model membrane, demonstrate that lipid 
fusion occurs after docking of the otoferlin C2F domain via the observation 
of a 62% increase in amplitude from the SFG signal near 2075 cm-1 assigned 
to specific groups within the model membrane. This increase is related to 
lipid ordering caused by the docking interaction of the otoferlin C2F 

domain. SFG spectra taken from the amide I region contain peaks near 
1621 cm-1 and 1672 cm-1 related to the C2F domains beta-sandwich 
secondary structure, thus, indicating that the domain binds in a specific 
orientation. By mapping the simulated SFG spectra to the experimentally 
collect SFG spectra, we found the C2F domain of otoferlin orients 32° 
normal to the lipid surface. This information allows us to map what portion 
of the domain directly interacts with the lipid membrane. Furthermore, we 
show first experimental view of any C2 domain of otoferlin docked at the 
membrane interface, thereby, validating SFG as a method to probe C2 
domain-membrane interfaces. 

2:20pm BI+AS+IPF+MN-MoA4 Vibrational Sum-frequency Scattering 
Spectroscopy for the Characterization of Protein Fiber Structures and 
their Surface Interactions in Biological Environments, Patrik K. Johansson, 
D.G. Castner, University of Washington 

Biological processes are typically regulated by interactions at the interface 
of 3D structures, such as the membrane of cells or protein fiber surfaces. 
Collagen (the most common protein in mammals) forms large fibers that 
are responsible for the structural integrity of tissues. The structure, 
organization and interactions of these fibers are furthermore important for 
the survival, communication, migration, and proliferation of cells. 

Investigating protein fiber interactions is challenging, particularly under 
biological conditions where the fibers exist in a 3D aqueous environment. 
Many techniques cannot interrogate interfaces buried in the bulk of a 
solvent and therefore require 2D surface models, while others need 
extensive purification and sample preparation. These approaches may not 
capture all key characteristics of the fiber surface structure and 
interactions in the real sample. However, vibrational sum-frequency 
scattering (SFS) spectroscopy, with inherent contrast for local molecular 
ordering, can be utilized towards these important goals. 

As a first demonstration, we have applied SFS to protein fibers in aqueous 
environments, self-assembled from collagen type I. We detected signals 
from the amide I band and the N-H stretching vibrations, both of which are 
related to the specific protein backbone structure. Signals from the C-H 
stretching and bending vibrations were also identified, which are more 
associated with the side-chains in the fibers. The angular scattering 
patterns for the backbone (amide I) and side-chain (C-H stretches and 
bends) signals are different, making the spectra dependent on the angle of 
detection. While the backbone signals are dominant in the phase-matched 
direction, the side-chain signals remain high also at large scattering angles. 
Distinctions in the organizational symmetry and the relative fiber surface 
contribution to the overall signal are hypothesized as reasons for this 
observation. 

Finally, we are investigating the impact of changes to the environment (e.g. 
ionic strength, pH, surfactants) on the shape of spectra and scattering 
patterns for the detected SFS signals. This could yield new insights to the 
structure and dynamics of collagen fibers in biological settings. The 
relevance of such investigations is enhanced by the fact that detection of 
vibrations from the surrounding molecules is a direct observation of their 
interactions with the collagen fiber surface, which thus can be correlated 
with the fiber structure. The relative orientations for the detected groups 
can also be obtained via vibrational SFS polarization analysis, for a deeper 
understanding of biomolecular interactions in biological processes. 

2:40pm BI+AS+IPF+MN-MoA5 How Proteins Grow Calcium Carbonates – 
The Mechanism of Vaterite Bioprecipitation Studied at the Molecular 
Level by Sum Frequency Generation Spectroscopy, H. Lu, Max Planck 
Institute for Polymer Research, Germany; S. Roeters, Aarhus University, 
Denmark; H. Lutz, M. Hood, A. Schäfer, Max Planck Institute for Polymer 
Research, Germany; R. Muñoz-Espí, Universidad de Valencia, Spain; M. 
Bonn, Max Planck Institute for Polymer Research, Germany; Tobias 
Weidner, Aarhus University, Denmark 

Proteins can act as Nature’s engineers at interfaces and manipulate hard 
tissue growths. Specialized peptides can bind and release specific mineral 
facets and grow the intricate mineral morphologies found in diatom cell 
walls, mollusk nacre, but also human teeth and bone. Taking clues from 
Nature we aim at understanding the mineralization processes at the 
molecular level and to develop design rules for biogenic nanophase 
materials. Mineral proteins control the biogenesis of CaCO3 by selectively 
triggering the growth of calcite, aragonite or vaterite phases. The 
templating of CaCO3 by proteins must occur predominantly at the 
protein/CaCO3 interface. Surprisingly, molecular-level insights into the 
interface during active mineralization have been lacking. Here, we 
investigate the role of peptide folding and structural flexibility on the 
mineralization of CaCO3. We discuss the mineral activity of amphiphilic 
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peptides based on glutamic acid and leucine with ß-sheet and α-helical 
secondary structures. While both sequences lead to vaterite structures, the 
ßsheets yield free-standing vaterite nanosheet with superior stability and 
purity. Surface-specific spectroscopy studies and molecular dynamics 
simulations reveal that the interaction of calcium ions with the peptide 
monolayer restructures both the peptide backbone and side chains. This 
restructuring enables effective templating of vaterite by mimicry of the 
vaterite (001) crystal plane. The approach is universally applicable to 
mineral peptide engineering. We will discuss how analogous peptide 
designs can be used to steer the growth not only of calcium carbonates but 
also calcium oxalates. 

3:00pm BI+AS+IPF+MN-MoA6 ToF-SIMS Imaging of Chemical 
Modifications in Topographically Challenging Materials, Michael Taylor, 
D.J. Graham, L.J. Gamble, University of Washington 

Three-dimensional (3D) porous materials are applied in a variety of areas 
within materials science1. Pores in catalysts provide a high surface reaction 
area, pores in biofilters facilitate fluid movement for biomolecule capture, 
and pores in tissue engineered constructs allow for cellular ingress and 
vascularization. These applications require surface modifications to add 
specific functionality to their surfaces. The successful functionality of these 
materials is related to the ability of these modifications to reach all 
surfaces of the pores. However, it is challenging to characterize these 
complicated materials and verify the presence and distribution of these 
surface modifications. Time-of-Flight Secondary Ion Mass Spectrometry 
(ToF-SIMS) is a powerful label-free surface analysis tool that can be used to 
image the molecular composition of cells, tissues and polymers. Porous 3D 
materials however, are non-ideal for ToF-SIMS analysis as the technique is 
highly surface-sensitive, topography on the order of microns can inhibit the 
ability to produce secondary ions related to surface modifications. To solve 
this problem we have developed a methodology for filling voids in porous 
materials to produce a surface where ToF-SIMS imaging may be performed. 
A embedding process for porous materials with poly(vinyl alcohol)(PVA) is 
detailed followed by freezing and cryo-sectioning to expose the modified 
scaffold interior. Here, we demonstrate the versatility of this method by 
high spatial resolution 3D imaging of a number of surface modifications in 
PCL poly(caprolactone) scaffolds2. Characterisation of fluorocarbon (FC) 
films deposited using octofluoropropane (C3F8) plasma enhanced chemical 
vapor deposition (PECVD) will be demonstrated, showing that increased 
treatment times deposits uniform coatings while shorter treatment results 
in a gradient distribution of FC throughout the PCL scaffold. Additionally we 
show data on imaging immobilized/adsorbed proteins within PCL scaffolds. 
Using this methodology we demonstrate that high spatial resolution label-
free 3D imaging of chemical modifications in materials with complex 
geometries is now possible with ToF-SIMS. 

Refs: 

(1) Yang, X.-Y.; Chen, L.-H.; Li, Y.; Rooke, J. C.; Sanchez, C.; Su, B.-L. 
Hierarchically Porous Materials: Synthesis Strategies and Structure Design. 
Chem. Soc. Rev.2017, 46 (2), 481–558 DOI: 10.1039/C6CS00829A. 

(2) Taylor, M. J.; Aitchison, H.; Hawker, M. J.; Mann, M. N.; Fisher, E. R.; 
Graham, D. J.; Gamble, L. J. Time of Flight Secondary Ion Mass 
Spectrometry—A Method to Evaluate Plasma-Modified Three-Dimensional 
Scaffold Chemistry. Biointerphases2018, 13 (3), 03B415 DOI: 
10.1116/1.5023005. 

3:40pm BI+AS+IPF+MN-MoA8 Imaging Plant and Plant Growth-Promoting 
Bacteria Interactions Using Time-of-Flight Secondary Ion Mass 
Spectrometry, Xiao-Ying Yu, R. Komorek, Z.H. Zhu, C.J. Jansson, Pacific 
Northwest National Laboratory 

We present the first imaging and spectra results of plant root interactions 
with plant growth-promoting bacteria (PGPB) using time-of-flight 
secondary ion mass spectrometry (ToF-SIMS), showing the successful 
application of delayed image extraction to study plant biology. Compared 
to MALDI (Matrix Assisted Laser Desorption Ionization), an imaging mass 
spectrometry technique widely used in plant studies,[1] SIMS is less 
destructive and provides submicrometer spatial mapping of molecular 
species of importance in metabolic processes. Brachypodium distachyon 
(Brachypodium), a genomics model for bioenergy and native grasses, is 
used due to its small diploid genome, close phylogenetic links to other 
grass species, relative ease of genetic transformation, short life cycle, small 
stature, and simple growth requirements.[2] Plant growth-promoting 
bacteria (PGPB) such as Pseudomonas and Arthrobacter were introduced to 
Brachypodium roots prior to analysis, and their potential effect on root 
extrusion was studied using ToF-SIMS imaging. Specifically, delayed image 
extraction was used in data acquisition. This approach was chosen to 

obtain high mass and high spatial resolutions.[3] Excellent SIMS imaging 
gives topographical description of the root surface with and without PGPB 
interactions. Distinctive characteristic peaks are observed, indicating 
compositional changes with and without PGPB introduction to the root 
surface beside visible surface morphological variations. Our initial results 
demonstrate that ToF-SIMS is a promising imaging mass spectrometry tool 
to study plant biology and root-microbe interactions and provide 
molecular-level insight at the biointerface with high spatial resolution. 

References:  

[1] D Sturtevant et al., Three-dimensional visualization of membrane 
phospholipid distributions in Arabidopsis thaliana seeds: A spatial 
perspective of molecular heterogeneity, Biochimica et Biophysica Acta 
(2017),1862(2), 268-81.  

[2] T Girin et al., Brachypodium: a promising hub between model species 
and cereals, J. Experimental Botany (2014),65(19), 5683-96.  

[3] QP Vanbellingen et al., Time-of-flight secondary ion mass spectrometry 
imaging of biological samples with delayed extraction for high mass and 
high spatial resolutions, Rapid Comm. Mass Spectrom. (2015), 29 (13), 
1187-95. 

4:00pm BI+AS+IPF+MN-MoA9 Imaging of Cells and Tissues with Helium 
Ion Microscopy, J.A. Notte, D. Wei, Chuong Huynh, Carl Zeiss Microscopy, 
LLC 

Both optical and electron microscopy are well established techniques in the 
life sciences with established protocols for imaging and sample 
preparation. However the newly developed helium ion microscope has 
some unique advantages, and is gaining a reputation for providing 
insightful, easy to interpret images over a wide range of biological samples 
and bio-materials. This presentation serves as both an introduction to this 
novel technique and a review of recent results. 

Because helium ions do not suffer appreciably from diffraction effects, they 
can be focused to a sub-nanometer probe, providing nanometer scale 
image resolution with a depth of focus that is well suited to complex 
surfaces and structures. As helium ions interact with the sample, they 
provide an abundance of secondary electrons that convey surface-specific 
and topographical information. Distinctly different from the conventional 
(gallium) focused ion beams, helium ions do not significantly damage the 
sample from the sputtering process. And importantly, helium ion 
microscopy is not affected by charging artifacts when imaging insulating 
materials, even glass slides, so there is no need for metal over-coating 
which would otherwise obscure finer details. 

Example images will include a pancreatic cell membrane showing the pores 
and cilia present on their natural surfaces. Other examples will show the 
complex structure of the principal cell and intercalated cells of the 
collecting duct of a rat kidney. Other imaging results from diverse fields 
include stony corals, collagen networks, bone minerals, stereocilia, 
otoconia, actin filaments, and cryptococcus neoformans. False colorized 
images of the multi-ciliated epithelial trachea of an adult mouse and T4-
phages will also be presented. Finally, new results will be shown from the 
SIMS spectrometer which provides elemental and isotopic information, and 
can be the basis for true colorizaton. 

In this talk, an emphasis will be placed on the physics principles that enable 
these imaging results. The selected examples serve to demonstrate the 
breadth of results that can be attained with this relatively new technique. 

4:20pm BI+AS+IPF+MN-MoA10 Quantitative Analysis of Electrolytes in 
Microliter-size Blood Drops Congealed via HemaDrop™ using Ion Beam 
Analysis and SIMNRA, H. Thinakaran, S.R. Narayan, J.M. Day, Nicole 
Herbots, F.J. Ark, B. Wilkens, M. Mangus, R.J. Culbertson, Arizona State 
University 

Accurate analysis of microliter blood samples can improve medical testing 
and forensics. Most critically ill patients suffer from hospital-acquired 
anemia due to the large volume currently required for blood diagnostic 
tests: 7 mL per vial. 

Prior attempts by Theranos to analyze microliter-sized blood droplets in 
liquid form exhibit systematic errors greater than 10%, higher than the 
acceptable medical threshold. 

This research investigates the accuracy of Ion Beam Analysis (IBA) 
performed on microliter-sized blood droplets congealed into Homogenous 
Thin Solid Films (HTSFs) using HemaDrop™, a new patent-pending 
technique using hyper-hydrophilic coatings to condense fluids into a 
uniform solid state with a smooth surface. 
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Prior to IBA analysis, the solidification of blood droplets into HTSF’s is 
observed with optical microscopy and compared to conventional Dried 
Blood Spots (DBS). DBS exhibit phase separation between platelets and 
serum, with non-uniform, rough surfaces. Conversely, blood droplets 
solidified on HemaDrop™-coated surfaces are uniform and smooth, with 
little phase separation. 

Next, quantitative compositional analysis using IBA is performed on μL 
blood drops solidified on HemaDrop™ coatings and is compared to results 
on DBS. HTSFs congealed on HemaDrop™-coated surfaces yield well-
defined 2 MeV RBS spectra where individual species and electrolytes (C, N, 
O, Na, K, Ca, Cl, Fe) can be identified, while none can be distinguished on 
DBS. 

The damage curve method [1] extracts elemental composition while 
accounting for possible IBA damage. Several consecutive spectra are taken 
on the sample, and RBS yields are interpolated to their original 
concentrations. 

IBA simulations with the software SIMNRA enable comparison between 
RBS data and simulations, resulting in elemental composition accurate 
within 1%. Blood electrolyte compositions via SIMNRA are obtained on 
successive IBA spectra taken on different areas of the thin solid films and 
on different HTSFs congealed from the same blood. Relative error analysis 
between different HTSF samples establishes whether reproducibility within 
10% can be achieved. 

HemaDrop™ reliably creates stable, uniform, thin solid films to measure 
blood composition from μL-volume drops based on comparative IBA results 
and optical observations. Measurements of elemental composition of HTSF 
of blood samples are accurate and reproducible. HemaDrop allows for 
analysis in vacuo from μL of blood, greatly expanding the range of 
techniques that can be applied to identify elements and molecules (e.g., 
antibiotics, proteins). 

[1] *Int & US Patent Pending, 2016, 2017 
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