Wednesday Afternoon, October 24, 2018

Biomaterial Interfaces Division Room 104B - Session BI+AC+AS+HC+NS+SS+TF-WeA

Current and Future Stars of the AVS Symposium II Moderator: David Boris, U.S. Naval Research Laboratory

2:20pm BI+AC+AS+HC+NS+SS+TF-WeA1 Medard W. Welch Award Lecture: A Surface Scientist's Journey from Small Molecules to Biomolecules and Biomaterials, David G. Castner¹, University of Washington INVITED Surface science plays an important role in a wide range of research and development areas such catalysis, biomaterials, microelectronics, clean energy and corrosion. The toolbox of surface scientist allows us to easily move across research topics and make significant impacts in both industrial and academic settings. The typical surface scientist is an expert in multiple techniques, surface modification, sample preparation/handling and instrumentation. We have all benefited from the significant and numerous advances that have occurred in the past 40 years in terms of improved instrumentation, introduction of new techniques and development of sophisticated data analysis methods, which has allowed us to perform detailed analysis of increasing complex samples. For example, comprehensive analysis of surfaces and surface immobilized molecules with modern surface science instrumentation provides an unprecedented level of detail about the immobilization process and the structure of the immobilized molecules. Results from x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), near edge x-ray absorption fine structure (NEXAFS), surface plasmon resonance (SPR) and guartz-crystal microbalance with dissipation (QCM-D) biosensing, atomic force microscopy, and sum frequency generation (SFG) vibrational spectroscopy combined with computation methods such as molecular dynamic (MD) and Monte Carlo (MC) simulations provide important information about surface chemistry and structure. However, even with the advances that have been achieved with these powerful surface science techniques, there still remain many significant challenges for surface scientist. These include characterizing the surface chemistry and structure of nanoparticles, determining the atomic level structure of complex molecules bound to surfaces, 3D imaging of samples, and improved sample preparation methods that maintain materials in a relevant state when using ultra-high vacuum based analysis techniques.

This talk will discuss my adventures as a surface scientist starting from chemisorption and reactivity studies of small molecules on single crystal surfaces followed by industrial catalysis research and eventually moving to biomedical surface analysis with side ventures into areas such as clean energy. It has been an exciting journey and I will use it to provide some examples of the multidisciplinary nature of surface science as well as discuss opportunities for addressing future challenges.

3:00pm BI+AC+AS+HC+NS+SS+TF-WeA3 Invited Talk-Future Stars of AVS Session: Making, Studying, and Designing Hierarchically Structured Soft Materials, *Keith A. Brown*², Boston University

Nature realizes extraordinary materials by structuring them precisely from the molecular scale to the macroscopic scale. While nature may have perfected this process over evolutionary time scales, synthetically recapitulating this level of control is tremendously difficult due to the large number of length scales involved and our limited knowledge of interactions between these scales. Faced with the daunting challenge of synthetically realizing soft hierarchical materials, we have adopted a three pronged strategy to: (1) make structures with control from the molecular scale to the macroscopic scale by directing bottom-up growth processes with topdown control, (2) learn how the properties of such materials emerge from their hierarchical structure, and (3) design the best performing structures using novel approaches borrowed from machine learning and autonomous research. In this talk, we will on report recent progress in this complementary areas of making, studying, and designing hierarchical materials. In particular, we will focus on two major classes of materials, nanoparticle-based structures where the assembly and organization of particles leads to emergent mechanical properties at the bulk scale and polymer-based materials where we are connecting the synthesis. patterning, and properties of polymer structures across scales. In addition to lessons about the fundamental properties of hierarchically organized soft matter, we will highlight the synergies possible when combining, synthesis, detailed characterization, and advances in materials design.

3:20pm BI+AC+AS+HC+NS+SS+TF-WeA4 Invited Talk-Future Stars of AVS Session: Vapor Phase Infiltration for Transforming Polymers into Hybrid Materials: Processing Kinetics and Applications, *Mark Losego*³, Georgia Institute of Technology

Vapor phase infiltration (VPI) is an emerging processing technology for infusing polymers with inorganic constituents to create new organicinorganic hybrid materials with novel chemical, electrical, optical, and/or physical properties. These new hybrid materials have demonstrated applications including chemical separations, photovoltaics, and microelectronics patterning. This talk will focus on our development of a fundamental VPI processing kinetics phenomenology to create a pathway for rational design of material composition and structure. By measuring VPI compositional profiles as a function of space or time and temperature, we can extract fundamental energy barriers for the sorption, diffusion, and reaction processes and delineate amongst different rate limiting steps. In our materials development, we often find that partial infiltration of a polymer film, fiber, or foam is sufficient to impart desired properties; so rational design of the infiltration kinetics can enable desired performance without waste in processing time or materials. Here, we will demonstrate several examples including our work to create chemically insoluble polymers and membranes. We find, for example, that infiltration depths of about 0.75 microns are sufficient to yield PMMA chemically insoluble in organic solvents regardless of whether it is in a thin film geometry or a macroscopic plexiglass object of centimeters in dimension. In PIM-1 membranes used for chemical separations, we find that we can achieve > 30 wt% inorganic loading with a single infiltration exposure. After infiltration, these membranes become stable in new separations solvents that previously swelled and/or dissolved the polymer.

(Submitted for the Future Stars of the AVS Symposium.)

4:20pm BI+AC+AS+HC+NS+SS+TF-WeA7 Invited Talk-Future Stars of AVS Session: Surface Preparation Methods for the Selective Oxidation of Ethanol to Acetaldehyde over TiO₂/Au(111), Ashleigh Baber⁴, D.T. Boyle, J. Wilke, V. Lam, D. Schlosser, James Madison University

Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of hydrogen from alcohols. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of

ethanol, which is easily regenerated in the presence of an oxygen background. The redox chemistry of small alcohols, including methanol and propanol, has been studied on Au(111) supported TiO₂ nanoparticles, yet the active site for the chemistry has not yet been elucidated. Depending on the surface preparation conditions, Au(111) supported TiO₂ nanoparticles react with small alcohols to form either reduced and oxidized products. The

desire to selectivity form oxidized or reduced products merits an investigation of alcohol reactivity over differently prepared TiO₂/Au(111) surfaces. In this work, a systematic study of ethanol reactivity over several TiO₂/Au(111) surfaces elucidates the effect of surface conditions on the

selectivity of the reaction between ethanol and TiO₂/Au(111). The reactivity of the surface for ethanol oxidation was altered by controlling the oxidation state of TiO_x (x<2). Atomic force microscopy (AFM) provides information regarding the structure of the Au(111) supported TiO₂

nanoparticles and ultrahigh vacuum temperature programmed desorption (\mbox{TPD}) monitors the selectivity of the reaction between ethanol and

TiO₂/Au(111). The presence of TiO₂ nanoparticles on Au(111), ~25 nm in diameter, led to the catalytic conversion of ethanol to acetaldehyde at temperatures greater than 400 K. Low coverages of fully oxidized TiO₂ nanoparticles on Au(111) are active for the selective oxidation of ethanol to form acetaldehyde.

4:40pm BI+AC+AS+HC+NS+SS+TF-WeA8 Invited Talk-Future Stars of AVS Session: Single Atom Catalysis: An Atomic-Scale View, Gareth Parkinson⁵, TU Wien, Austria

Single-atom catalysis is a rapidly emerging area of research that aims to maximize the efficient usage of precious metals through "single atom" active sites. Although catalytic activity has been demonstrated for several single-atom catalyst systems, an inability to accurately characterize the catalyst based on single atom active sites ensures that that the field remains controversial, and little is really known about how a single atom

³ Future Stars of the AVS
 ⁴ Future Stars of the AVS
 ⁵ Future Stars of the AVS

¹ Medard W. Welch Award Winner ² Future Stars of the AVS

1

Wednesday Afternoon, October 24, 2018

adsorbed on a metal oxide support catalyzes a chemical reaction. In this lecture, I will describe how we are addressing the crucial issues of stability and reaction mechanism using a surface science approach. The work is based on the magnetite (001) surface, which exhibits an unusual reconstruction based on subsurface cation vacancies.

The surface stabilizes ordered arrays of metal adatoms (of almost any variety) with a nearest neighbor distance of 0.84 nm to unprecedented temperatures as high as 700 K. Crucially, because the geometry of the adatoms is uniform and precisely known, reactivity experiments are performed on a well-defined model system, and theoretical calculations can be performed to shed light on the mechanisms at work. Several examples of our recent work will be used to illustrate the trends discovered to date, including how strong CO adsorption destabilizes Pd and Pt adatoms leading to rapid sintering, and how extraction of lattice oxygen from the metal-oxide is central to catalytic activity in the CO oxidation reaction.

5:00pm BI+AC+AS+HC+NS+SS+TF-WeA9 Invited Talk-Future Stars of AVS Session: Multimodal Chemical and Functional Imaging of Nanoscale Transformations Away from Equilibrium, Olga Ovchinnikova¹, Oak Ridge National Laboratory

The key to advancing energy materials is to understand and control the structure and chemistry at interfaces. While much of the dynamic chemistry can be studied on macro-scale systems, there is a lack of means to localize chemical measurements and correlate them to nanoscale structure of the material. Through a unique merger of advanced scanning probe microscopy and mass spectrometry techniques rooted in innovative data processing and control algorithms, we are now able to understand the interplay between chemical and physical functionality at the fundamental length using multimodal chemical imaging. This multimodal imaging transcends existing techniques by providing nanoscale structural imaging with simultaneous quantitative nanomechanical properties and quantitative chemical analysis. In this talk I will discuss how we have developed and used this capability to visualize dynamic material transformations at interfaces, to correlate these changes with chemical composition, and to distil key performance-centric material parameters. One exciting capability is that the AFM can be used to drive materials away from equilibrium at the nanoscale with highly localized electric fields. This allows field confinement effects on localized chemistry in materials to be locally probed, especially at interfaces. This in turn yields direct information on key energy related questions such as electron and ion motion distribution and transport at and between interfaces. We have applied this approach to the study of systems and processes that underlie energy capture, conversion and storage, including photovoltaics and oxide ferroelectrics, which have historically eluded comprehensive understanding of the mechanisms behind the spatially heterogeneous interfacial chemistry and its link to material performance. Overall, I will focus on ways to unlock the mystery of active interface formation through intertwining data analytics, nanoscale elemental and molecular characterization, with imaging; to better grasp the physical properties of materials and the mechanistic physics-chemistry interplay behind their properties.

5:20pm BI+AC+AS+HC+NS+SS+TF-WeA10 Invited Talk-Future Stars of AVS Session: Expanding the Structural Toolkit to Characterize Heavy Actinide Complexes, *Rebecca Abergel*², Lawrence Berkeley Lab, University of California, Berkeley; *G. Deblonde, A. Mueller, P. Ercius,* Lawrence Berkeley National Laboratory; *A.M. Minor,* Lawrence Berkeley Lab, University of California, Berkeley; *C.H. Booth, W.A. de Jong,* Lawrence Berkeley National Laboratory; *R. Strong,* Fred Hutchinson Cancer Research Center

Structural characterization of actinide elements from actinium to einsteinium can be a challenging task due to the high radioactivity and limited availability of some of the isotopes of interest. However, significant work is needed to address a certain lack of understanding of the fundamental bonding interactions between those metal centers and selective ligands. Such understanding presents a rich set of scientific challenges and is critical to a number of applied problems including the development of new separation strategies for the nuclear fuel cycle, the need for decontamination after a nuclear accident or the use of radioisotopes for new cancer treatments. Our studies utilize luminescence sensitization, UV-Visible, X-ray absorption, and X-ray diffraction spectroscopic techniques as well as transmission electron microscopy and electron energy loss spectroscopy to investigate specific heavy actinide coordination features. Using simple inorganic complexes but also strong hard oxygen-donor ligands as well as more elaborate higher molecular weight protein assemblies allows the differentiation of heavy actinide species even when limited to minute amounts of materials. Innovative structural characterization approaches based on X-ray absorption, X-ray diffraction and electron microscopy that were applied to series of isostructural systems and used to derive coordination trends in the later 5*f*-element sequence will be discussed.

5:40pm BI+AC+AS+HC+NS+SS+TF-WeA11 Invited Talk-Future Stars of AVS Session: Trends in Adsorbate Interactions with Bimetal Surfaces, *Liney Arnadottir*³, *L.H. Sprowl*, Oregon State University

Surface chemistry plays an important role in a large range of applications and technologies, such as catalysis and electrocatalysis, device fabrication through film growth, and degradations through oxide formation, carbonization, and corrosion. Bimetal surfaces are of increasing interest for single atom catalysis and corrosion resistance of alloys. Previous studies have shown correlations between adsorbate interactions and d-band shifts for different metals as well as for alloying effects of metal sandwich structures, but for mixed metal surfaces the nature of the adsorption site can change (ensemble effect) as well as the number of electrons in the surface layer which effects the d-band center. Here we explore correlations of adsorbate interactions with mixed metal surfaces through density functional theory calculations of adsorbate interactions with different facets, (100) and (111), of pure Ni and eleven Ni-based surface alloys as well as Ni in different host metal. We find that the addition of surface alloying atom has little effect on the binding of CO and C but C binding varies for different facets. On the other hand, O binding is highly dependent on the alloying element due to ensemble effect. This has an interesting effect on the predicted reaction energies of CO dissociation which is endothermic on the (111) facet and exothermic on the (100) facet governed by C interactions but the changes in the reaction energy within each facet are mostly governed by the ensemble effect on O adsorption. The relationship between the formation energy of the mixed metal surface and adsorbate interactions will also be discussed.

2

Author Index

-A-Abergel, R.J.: BI+AC+AS+HC+NS+SS+TF-WeA10, **2** Arnadottir, L.: BI+AC+AS+HC+NS+SS+TF-WeA11, **2** -B-Baber, A.: BI+AC+AS+HC+NS+SS+TF-WeA7, 1 Booth, C.H.: BI+AC+AS+HC+NS+SS+TF-WeA10, 2 Boyle, D.T.: BI+AC+AS+HC+NS+SS+TF-WeA7, 1 Brown, K.A.: BI+AC+AS+HC+NS+SS+TF-WeA3, 1 - C -Castner, D.G.: BI+AC+AS+HC+NS+SS+TF-WeA1, **1**

Bold page numbers indicate presenter — D de Jong, W.A.: BI+AC+AS+HC+NS+SS+TF-WeA10, 2 Deblonde, G.: BI+AC+AS+HC+NS+SS+TF-WeA10, 2 — E — Ercius, P.: BI+AC+AS+HC+NS+SS+TF-WeA10, 2 -L-Lam, V.: BI+AC+AS+HC+NS+SS+TF-WeA7, 1 Losego, M.D.: BI+AC+AS+HC+NS+SS+TF-WeA4, **1** -M-Minor, A.M.: BI+AC+AS+HC+NS+SS+TF-WeA10, 2 Mueller, A.: BI+AC+AS+HC+NS+SS+TF-WeA10, 2

- O -Ovchinnikova, O.S.: BI+AC+AS+HC+NS+SS+TF-WeA9, 2
- P -Parkinson, G.S.: BI+AC+AS+HC+NS+SS+TF-WeA8, 1
- S -Schlosser, D.: BI+AC+AS+HC+NS+SS+TF-WeA7, 1
Sprowl, L.H.: BI+AC+AS+HC+NS+SS+TF-WeA11, 2
Strong, R.: BI+AC+AS+HC+NS+SS+TF-WeA10, 2
- W -Wilke, J.: BI+AC+AS+HC+NS+SS+TF-WeA7, 1