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8:00am 2D+AM+EM+NS-WeM1 Carbon Doping of 2D Transition Metal 
Dichalcogenides by Plasma Enhanced CVD, Yanfu Lu, F. Zhang, S. Sinnott, 
M. Terrones, The Pennsylvania State University 

Doping of 2D transition metal dichalcogenides has been discovered to be 
an effective way to tune the electronic structure and modify the lattice 

structure at the surface. The n-type and p-type doping of monolayer 
MoS2/WS2 heterostructures may enable the fabrication of field-effect 
transistors of ultra-low thickness. Plasma enhanced chemical vapor 

deposition provides a stable and controllable approach for introducing 
carbon dopants to monolayer WS2. Photoluminescence measurement 

indicates that the band gap of C-doped WS2 decreases by 0.17 eV. 
Corresponding first principles calculations provide the correlation between 

the position and chemical saturation of the carbon dopants and the 
electronic structure of the system. To verify covalently bonded dopants, we 
use Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning 

transmission electron microscopy to examine the pristine sample and 
carbon-doped samples. Subsequent I-V characteristics measurements 

prove p-type doping and the energy band diagram. Finally, the mechanism 
associated with and, more importantly, the structure-property relationship 
of chalcogen doping are analyzed. The resulting new insights of transition 

metal dichalcogenide-based heterostructures and alloys are discussed. 

8:20am 2D+AM+EM+NS-WeM2 Methoxy Formation Induced Defects on 
MoS2*, Duy Le, University of Central Florida; P. Evans, University of 
Nebraska - Lincoln; Z. Hooshmand, University of Central Florida; T.B. Rawal, 
Oak Ridge National Laboratory; L. Bartels, University of California, 
Riverside; P.A. Dowben, University of Nebraska-Lincoln; T.S. Rahman, 
University of Central Florida 

Defects are known to play an important role in determining the chemical 
properties of otherwise inert MoS2 basal plane. Here we report our joint 

experimental and theoretical study of the adsorption and reaction of 
methanol on the MoS2 basal plane to determine the factors that control 

system reactivity. We find that exposure of the MoS2 basal plane to 
methanol leads to the formation of adsorbed methoxy and coincides with 

sulfur vacancy generation and that the methoxy moieties bind to 
molybdenum, not sulfur, while some adsorbed methanol is readily 

desorbed near or slightly above room temperature. Our calculations also 
suggest that the dissociation of methanol via O–H bond scission occurs at 
the defect site (sulfur vacancy), followed subsequently by formation of a 
weakly bound H2S species that promptly desorbs from the surface with 

creation of a new sulfur vacancy, in great agreement with 
photoluminescence and scanning tunneling microscopy data that show 
clear evidence of the sulfur vacancy creation on the MoS2 surface, after 

exposure to methanol [1]. 

[1] P. Evans et al, J. Phys. Chem. C (2018). DOI: 10.1021/acs.jpcc.8b02053 

* Work supported in part by DOE grant DE-FG02-07ER15842 

8:40am 2D+AM+EM+NS-WeM3 Defect Engineering of 2D Materials for 
Advanced Electronic Devices, Gwan-Hyoung Lee, Yonsei University, 
Republic of Korea INVITED 

Two-dimensional (2D) materials have brought a great deal of excitement to 
nanoscience community with their attractive and unique properties. Such 

excellent characteristics have triggered highly active researches on 2D 
material-based electronic devices. New physics observed only in 2D 

semiconductors allow for development of new-concept devices. Assembly 
of 2D blocks for van der Waals heterostructures also provide a big 

playground for engineers and physicists to investigate unprecedented 
properties of 2D materials and fabricate multi-functional electronic 

devices. However, atomically thin 2D materials, such as graphene and 
transition metal dichalcogenides (TMDs), have only two surfaces at top and 

bottom without a bulk so that they are very sensitive to environment. In 
other words, properties of 2D materials can be altered easily by surface 

modification. In this talk, I will show novel approach to fabricate high 
performance 2D electronic devices by utilizing various surface treatments, 

such as fluorination and hydrogenation of graphene and layer-by-layer 
oxidation of MoS2. When different types of defects, such as sp3 bonds and 

vacancies, are induced on the surface of graphene, the electrical properties 
of graphene can be tuned. With mild plasma treatment, MoS2 can be 

oxidized layer-by-layer and monolayer MoS2 can be fabricated from the 

multilayer MoS2. These surface treatment techniques can be used for 
fabrication of high performance graphene devices and MoS2 optoelectronic 

devices. Defect engineering of 2D materials holds a great promise in 
engineering the 2D materials and fabricating advanced electronic devices 

of 2D materials. 

9:20am 2D+AM+EM+NS-WeM5 Modeling Defects and Electron-electron 
Interactions in Low-dimensional Materials, Daniel Gunlycke, C.E. Ekuma, 
U.S. Naval Research Laboratory 

While each nanoscale structure in a low-dimensional material can exhibit a 
variety of properties, the odds are that it will be (1) sensitive to defects and 
(2) strongly influenced by electron-electron interactions. The ratio of defect 

sites to pristine sites naturally increases, as structures become smaller. 
Electron localization can furthermore dramatically magnify the role of 

defects. In low-dimensional materials, dielectric screening is generally less 
effective, reducing the tendency for electronic interactions to become 

uniform across the sites in the materials. Despite the importance of both 
defects and electron-electron interactions, the properties of low-

dimensional materials are often investigated in the absence of one or the 
other. This not only creates uncertainty over the predictions but could 
entirely miss certain physical phenomena, including insulator-to-metal 

transitions. In this presentation, we will discuss a general first-principles-
based approach to explore realistic low-dimensional structures that 

explicitly accounts for both defects and electron-electron interactions [1]. It 
is based around a generalized Anderson Hamiltonian and applies density 
functional theory, as well as dynamical mean-field theory. We will also 
present electronic and optical properties of two-dimensional materials 
obtained using our method and discuss the potential for using defect 

engineering for improved solar cell performance. 

[1] C. E. Ekuma, V. Dobrosavljevic, and D. Gunlycke, Physical Review Letters 
118, 106404 (2017) 

This work was supported by the Office of Naval Research, directly and 
through the U.S. Naval Research Laboratory. 

9:40am 2D+AM+EM+NS-WeM6 Post-Synthesis Modifications of Two-
Dimensional MoSe2 or MoTe2 by Incorporation of Excess Metal Atoms 
into the Crystal Structure, Paula Mariel Coelho, University of South 
Florida; H. Komsa, Aalto University, Finland; H. Coy Diaz, Y. Ma, University 
of South Florida; A.V. Krasheninnikov, Institute of Ion Beam Physics and 
Materials Research, Germany; M. Batzill, University of South Florida 

Modifications of MoSe2 and MoTe2 with metallic mirror twin grain 
boundaries (MTB) in films grown by molecular beam epitaxy have been 
previously reported [1,2]. The goal of the study presented here has been to 
understand the formation-mechanism of MTB networks and apply this 
gained knowledge for controlled modifications of these 2D materials. In a 
combined scanning tunneling microscopy and density functional theory 
approach we demonstrate that excess Mo can easily diffuse into the 
pristine MoSe2 or MoTe2 (but not into MoS2) layer and cause crystal 
modifications into Mo-rich twin grain boundaries. Vapor deposited Mo 
atoms are first incorporated by diffusing into interstitial (or split-interstitial) 
sites. Then, further Mo-atoms incorporate into the crystal structure to form 
triangular, Mo-rich grain boundary loops. Only after a critical density of 
MTBs is reached, Mo is no-longer absorbed by the 2D-crystal sheet and 
Mo-clusters start to form at the surface. The energetics and barriers for 
Mo-incorporation is calculated by DFT and shows that the formation of 
twin grain boundaries in the presence of excess Mo is favorable for MoTe2 
and MoSe2, but not for MoS2 - in agreement with the experiment. The 
achievable dense networks of MTBs constitute a new Mo-rich metallic 
phase that may be used for controlled electric contacts or creation of 
active sites in electro-catalysis [4] and thus adding new functionalities into 
transition metal dichalcogenide-based materials and devices. Moreover, 
DFT simulations suggest that this mechanism for incorporation of transition 
metals is not limited to Mo. This enables modification of the materials 
properties by heteroatom dopants and initial experimental work 
demonstrates the incorporation of both Ti and V. V-interstitials in MoTe2 
are predicted to have a magnetic moment and magnetic hysteresis curves 
indicate the induction of ferromagnetism in MoTe2 by doping the material 
with less than 1% of V interstitials. 

REFERENCES: 

[1] Ma Y, et al. (2017) Metallic Twin Grain Boundaries Embedded in MoSe2 
Monolayers Grown by Molecular Beam Epitaxy. ACS Nano 11, 5130-5139. 

[2] Coy Diaz H, Ma Y, Chaghi R, Batzill M. (2016) High Density of (Pseudo) 
Periodic Twin-Grain Boundaries in Molecular Beam Epitaxy-Grown van der 
Waals Heterostructure: MoTe2/MoS2. Appl. Phys. Lett. 108, 191606. 
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[3] Ma Y. et al. (2017) Angle resolved photoemission spectroscopy reveals 
spin charge separation in metallic MoSe2 grain boundary. Nat. Commun. 8, 
14231. 

[4] Tomasz Kosmala et al. (2018) Metallic Twin Boundaries Boost the 
Hydrogen Evolution Reaction on the Basal Plane of Molybdenum 

Selenotellurides. Adv. Energy Mater. 2018, 1800031. 

11:00am 2D+AM+EM+NS-WeM10 Dry Cleaning and Doping of MX2 for 
Contact Engineering, Daniil Marinov, IMEC, Belgium; J. Ludwig, IMEC & KU 
Leuven, Belgium; D. Chiappe, IMEC, Belgium; E. Voronina, T. Rakhimova, 
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State 
University; J.-F. de Marneffe, I. Asselberghs, IMEC, Belgium; S. De Gendt, 
IMEC, KU Leuven, Belgium 

Two-dimensional transition metal dichalcogenides (e.g. MoS2, WS2) are 
promising materials for a number of electronic and optoelectronic 
applications. Wafer-scale integration of these materials into sophisticated 
devices requires atomic-scale control of the processing steps such as 
deposition, etch, clean and doping. Reduction of the contact resistance is a 
major roadblock towards demonstration of high-performance devices. 
Significant Schottky barrier at the metal-MX2 interface as well as surface 
contamination (e.g. by polymer residues) are the main factors contributing 
to the high contact resistance in fabricated MX2 devices. In this study, a 
fully dry cleaning and doping technique is developed with a particular focus 
on contact engineering.  

We demonstrate that a remote H2 plasma is efficient for removal of organic 
residues from MX2 surfaces. However, sulfur can be also stripped from the 
topmost layer by reactive H atoms. The main challenge is thus to precisely 
control the sulfur loss while maintaining the cleaning efficiency. At high 
substrate temperature, a 200 nm PMMA layer can be fully removed 
selectively to a single layer of WS2 without damaging the 2D material (as 
confirmed by photoluminescence measurements). At low substrate 
temperatures significant S-vacancy formation was observed. Surface 
temperature is therefore the key parameter for controlling the reactivity of 
H atoms on WS2. 

Controllable formation of sulfur vacancies opens routes for substitutional 
doping. After H2 plasma strip, WS2 and MoS2 samples were exposed to a 
flow of molecular gases (Cl2, CO, OCS) without igniting the plasma. It is 
shown that Cl2 and OCS can react with H2 plasma treated MX2 forming 
stable surface groups. Ex-situ conductive AFM measurements confirm that 
molecular doping prevents the loss of conductivity (that is observed after 
H2 plasma alone). Moreover, OCS and Cl2 exposure enhances electrical 
current injection in the material through grain boundaries and edges. The 
latter effect is beneficial for contact resistance reduction on MX2. 

To gain a deeper insight in the observed surface phenomena, DFT 
simulation of the interaction of atomic (H, Cl, F) and molecular (OCS, Cl2) 
species with MX2 surface was performed. S-vacancy creation by atomic 
hydrogen via formation of gas phase H2S was observed in simulations, in 
qualitative agreement with the experiments. Moreover, dissociative 
adsorption of Cl2 and OCS in S-vacancy sites is predicted by the DFT model.  

Dr D. Marinov has received funding from the European Union’s Horizon 
2020 research and innovation programme under the Marie Sklodowska-

Curie grant agreement No 752164. 

11:20am 2D+AM+EM+NS-WeM11 Deep Learning for Atomically-Resolved 
Scanning Transmission Electron Microscopy Experiments on 2D Materials, 
Maxim Ziatdinov, S.V. Kalinin, Oak Ridge National Laboratory 

Understanding fundamental atomic-scale mechanisms behind solid state 
reactions and phase transformations is critical for optimizing functional 

properties of technologically relevant materials. Recent advances in 
scanning transmission electron microscopy (STEM) have allowed to 

visualize dynamic processes in solid state systems, induced by thermal or 
chemical stimuli or electron beam, on the level of individual atoms and 
single atomic defects. However, while there have been multiple STEM 

studies on materials structure evolution, the materials-specific knowledge 
on the kinetics and thermodynamics of these processes and atomic 

potentials is almost non-existent, which is mainly due to the inherent 
limitations of the current (semi-)manual image analysis techniques. Here 

we demonstrate an approach based on deep convolutional neural 
networks for automated analysis of dynamic STEM data from 2-

dimensional materials, such as monolayer WS2, under e-beam irradiation. 
Our approach allows to create a library of atomic defects, explore subtle 

atomic distortions around the defects of interest and map chemical 
transformation pathways on the atomic level. We specifically show how 

the developed framework can be used for extracting diffusion parameters 

of sulfur vacancies in WS2 and for studying transformation pathways for 
Mo-S complexes, including detailed transition probabilities. 

11:40am 2D+AM+EM+NS-WeM12 Magnetic Doping in 2D MBE-grown-
MoSe2/graphene Heterostructures Studied by Photoelectron 
Spectroscopy and Band Structure Imaging, Maxime Gay, O.J. Renault, CEA-
LETI, France; MT. Dau, C. Vergnaud, M. Jamet, CEA-INAC-SPINTEC, France 

2D TMDCs present a unique combination of electronic and mechanical 
properties such as a direct bandgap, strong spin-orbit coupling and K-valley 

inequivalence, with an atomic-scale thickness [1]. Introducing magnetic 
phases into these materials opens exciting perspectives towards spin 

control in magnetic tunnel junctions. To date, magnetism in 2D systems 
was mostly studied by theoretical calculations. Within the diluted magnetic 

semiconductors model, transition metal atoms from the monolayer are 
substituted by a few Mn, Fe or Co atoms [2-4].  

Our study focuses on Mn-doped-MoSe2 monolayers, grown by molecular 
beam epitaxy on graphene, and characterized by photoemission 

techniques (XPS, kPEEM) coupled with observations at different scales 
(DRX, TEM). Before doping, we found that the in-plane lattices of graphene 

and MoSe2 are aligned with each other and that a bandgap opens in the 
graphene around the Fermi level [5-6]. After Mn doping, the obtained Mn 

insertion is measured up to 15% by XPS. The influence of Mn doping on the 
band structure of MoSe2/graphene heterostructure will be presented and 

discussed. 

--- 
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