AVS 65th International Symposium & Exhibition | |
Surface Science Division | Wednesday Sessions |
Session SS+AS+EM-WeA |
Session: | Semiconducting Surfaces |
Presenter: | Fatemeh Rezaeifar, University of Southern California |
Authors: | F. Rezaeifar, University of Southern California R. Kapadia, University of Southern California |
Correspondent: | Click to Email |
In this report, we demonstrate the novel approach of integrated photonics waveguide driven electron emission from Lanthanum hexaboride (LaB6) nanoparticles drop-casted over the surface of an optical waveguide. We use integrated waveguide under LaB6 electron emitter as a mean to transport photons and evanescently couple them to emitter. This evanescent coupling occurs through longer interaction length and photons can be absorbed efficiently compared to free space laser illumination from top on a metallic emitter. Furthermore, nanoparticles with the average diameter of 4 nm are at the order of electron mean free path and electron emission occurs with fewer scattering compared to electron emission from conventional bulky metallic emitters. As such, in our proposed device, the higher optical absorption along with fewer scattering inside nanoparticles enable us with larger quantum efficiency electron emitters beyond the available photon driven emitters.
We experimentally studied the photon driven electron emission characteristics obtained by coupling of CW laser (wavelength = 405 nm) to LaB6 nanoparticle emitters drop-casted on top surface of the silicon nitride ( Si3N4) integrated waveguide with height of 5 µm and width of 50 µm. Optical V-groove was fabricated for coupling 405 nm laser from 200 µm optical fiber in to Si3N4 waveguide. The work function of the LaB6 is only 2.69 eV and it requires very small E-field to collect the photon driven emitted electrons. We observed photocurrent at E-field as small as 0.3 V/µm while the dark current detection from LaB6 nanoparticles begins at higher E-field, 3.5 V/µm. In addition, we present the photocurrent dependency on the laser power. At small E-field in which no tunneling is possible, we observed a linear relation between the photocurrent and laser power indicating single photon ability for this emission process. This matches to the expected slope of 1 for single photon absorption process, given that the work function of LaB6 is only 2.69 eV, and our photon energy at 405 nm is 3.1 eV. Finally, we present the comparative results for the emission properties from LaB6 nanoparticles illuminated with free space laser to evaluate the performance of the proposed integrated photonics driven emitters. While free space illuminated method results in emission current as small as 1 pA with 390 mW of laser power, the integrated photonics driven emitter emits above 50 pA with much smaller laser power transporting inside the optical waveguide, 100 µW. As such, we conclude integrated photonics driven emitter as a potential solution for increasing the quantum efficiency of the future electron emitters.