AVS 65th International Symposium & Exhibition | |
Extending Additive Manufacturing to the Atomic Scale Focus Topic | Wednesday Sessions |
Session AM+NS+SS-WeM |
Session: | Nanofabrication with Focused Electron Beams (8:00-10:00 am)/Atomic Scale Manipulation with Focused Electron Beams (11:00 am-12:20 pm) |
Presenter: | Stephen Jesse, Oak Ridge National Laboratory |
Authors: | S. Jesse, Oak Ridge National Laboratory O. Dyckoe, Oak Ridge National Laboratory S.V. Kalinin, Oak Ridge National Laboratory |
Correspondent: | Click to Email |
Fabrication of atomic scale structures remains the ultimate goal of nanotechnology. The reigning paradigms are scanning probe microscopy (SPM) and synthesis. SPM assembly dates to seminal experiments by Don Eigler, who demonstrated single atom manipulation. However, stability and throughput remain issues. The molecular machines approach harnesses the power synthetic chemistry to build individual functional blocks, yet strategies for structural assembly remain uncertain.
In this presentation, I discuss research activity towards a third paradigm — the use of the atomically focused beam of a scanning transmission electron microscope (STEM) to control and direct matter on atomic scales. Traditionally, STEM’s are perceived only as imaging tools and beam induced modifications as undesirable beam damage. Our team and several groups worldwide have demonstrated that beam induced modifications can be more precise. We have demonstrated ordering of oxygen vacancies, single defect formation in 2D materials, and beam induced migration of single interstitials in diamond like lattices. What is remarkable is that these changes often involve one atom or small group of atoms, and can be monitored real-time with atomic resolution. This fulfills two out of three requirements for atomic fabrication. I will introduce several examples of beam-induced fabrication on the atomic level, and demonstrate how beam control, rapid image analytics, better insight through modelling, and image- and ptychography based feedback allows for controlling matter on atomic level.
This research is supported by and performed at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, BES DOE.