AVS 65th International Symposium & Exhibition
    Actinides and Rare Earths Focus Topic Friday Sessions
       Session AC+MI+SA-FrM

Paper AC+MI+SA-FrM10
Ligand Induced Shape Transformation of Thorium Dioxide Nanocrystals

Friday, October 26, 2018, 11:20 am, Room 202C

Session: Actinide and Rare Earth Theory and Related Measurements
Presenter: Gaoxue Wang, Los Alamos National Laboratory
Authors: G. Wang, Los Alamos National Laboratory
E. Batista, Los Alamos National Laboratory
P. Yang, Los Alamos National Laboratory
Correspondent: Click to Email

Nanocrystals (NCs) with size and shape dependent properties are a thriving research field. Remarkable progress has been made in the controlled synthesis of NCs of stable elements in the past two decades; however, the knowledge of the NCs of actinide compounds has been considerably limited due the difficulties in handling them both experimentally and theoretically. Actinide compounds, especially actinide oxides, play a critical role in many stages of the nuclear fuel cycle. Recently, a non-aqueous surfactant assisted approach has been developed for the synthesis of actinide oxide NCs with different morphologies, but an understanding of its control factors is still missing to date. Herein we present a comprehensive study on the low index surfaces of thorium dioxide (ThO2) and their interactions with relevant surfactant ligands using density functional calculations. A systematic picture on the thermodynamic stability of ThO2 NCs of different sizes and shapes is obtained employing empirical models based on the calculated surface energies. It is found that bare ThO2 NCs prefer the octahedral shape terminated by (111) surfaces. Oleic acid displays selective adsorption on the (110) surface, leading to the shape transformation from octahedrons to nanorods. Other ligands such as acetylacetone, oleylamine, and trioctylphosphine oxide do not modify the equilibrium shape of ThO2 NCs. This work provides atomic level insights into the anisotropic growth of ThO2 NCs that was recently observed in experiments, and thus may contribute to the controlled synthesis of actinide oxide NCs with well-defined size and shape for future applications.