AVS 64th International Symposium & Exhibition | |
Biomaterials Plenary Session | Sunday Sessions |
Session BP-SuA |
Session: | Plenary - Engineering a Paradigm Shift in Control of Microbes and Fouling: In Honor of Michael Grunze's 70th Birthday |
Presenter: | Joanna Aizenberg, Harvard University |
Correspondent: | Click to Email |
Living organisms and biological substances are among the most difficult and persistent sources of surface fouling, particularly in medical and marine settings. The ability of organisms to adapt, move, cooperate, evolve on short timescales, and modify surfaces by secreting proteins and other molecules enables them to colonize even state-of-the-art antifouling coatings, and small surface defects can trigger protein aggregation and blood clotting. Attempts to combat these issues are further hindered by conflicting requirements at different size scales and across different species. Our recently developed concept of Slippery, Liquid-Infused Porous Surfaces (SLIPS) provides a defect-free, dynamic liquid interface that overcomes many of these problems at once. A single surface is able to prevent adhesion of a broad range of genetically diverse bacteria, including many pathogenic species that underlie widespread hospital-acquired infections, as well as marine algae. The same approach resists adhesion of proteins, cells, and blood, preventing clogging and thrombus formation inside medical tubing and catheters. At a larger scale, the slippery interface repels insects, barnacles and mussels, which slide off and actively avoid the coated surface. We are currently developing this strategy to solve longstanding fouling issues in a wide range of medical, marine, and other settings.
References T.-S. Wong et al. Nature 477 (2011).
A.K Epstein et al. Proc. Nat. Acad. Sci. USA 109 (2012).
N. Vogel et al. Nature Communications 4 (2013).
X. Yao et al. Nature Materials 12 (2013).
D.C. Leslie et al. Nature Biotechnology (2014).
S. Sunny et al. Adv. Funct. Mater. 24 (2014).
C. Howell et al. ACS Appl. Mater. Interfaces (2014).
X. Yao et al. Angew. Chem. Int. Ed 53 (2014).
A. Tesler et al. Nature Communications 6 (2015).
J. Cui et al. Nature Materials 14 (2015).
N. MacCallum et al. ACS Biomater. Sci. Eng. 1 (2015).
X. Hou et al. Nature 519 (2015).
C. Howell et al. Chem. Mater. 27 (2015).
S. Sunny et al. Proc. Nat. Acad. Sci. USA (2016).
J. Chen et al. Biomaterials (2017)