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8:20am SP+AS+MI+NS+SS-MoM1 Ultrafast Imaging of Polarization 
Switching in Ferroelectrics via Complete Information Acquisition in SPM, 
Suhas Somnath, A. Belianinov, S.V. Kalinin, S. Jesse, Oak Ridge National 
Laboratory 

SPM imaging can be represented as an information channel between the 
dynamic processes at the tip-surface junction and the observer. Current 
SPM techniques use heterodyne detection methods such as lock-in 
amplifiers which result in significant loss in vital information such as 
information from higher eigenmodes, mode-mixing, and other non-linear 
phenomena in the tip-surface interaction. We present a new technique 
called General-mode (G-mode) where we capture the complete broad-
band response of the cantilever at sampling rates of 1-100 MHz. The 
availability of the complete cantilever response facilitates the application 
of various physical models as well as multivariate statistical methods to 
extract information that has been unavailable from current SPM 
techniques. Polarization switching in ferroelectric and multiferroic 
materials underpins the next generation of electronic devices such as 
tunneling devices, field effect transistors, and race-track memories. The 
switching mechanisms in these materials are highly sensitive to the local 
defects and structural imperfections at the micro and nanometer scale, 
which have undesirable effects on ferroelectric domains. These 
considerations necessitated the development of Piezoresponse Force 
Microscopy (PFM) imaging and spectroscopy techniques to measure and 
manipulate local polarization states. However, the current state-of-art PFM 
spectroscopy techniques suffer from serious compromises in the 
measurement rate, measurement area, voltage and spatial resolutions 
since they require the combination of a slow (~ 1 sec) switching signal and 
a fast (~ 1 – 10 msec) measurement signal. Furthermore, these techniques 
only capture the narrow-band cantilever response. We report on a 
fundamentally new approach that combines the full cantilever response 
from G-mode with intelligent signal filtering techniques to directly measure 
material strain in response to the probing bias. Our technique enables 
precise spectroscopic imaging of the polarization switching phenomena 
3,500 times faster than currently reported methods. The improved 
measurement speed enables dense 2D maps of material response with 
minimal drift in the tip position. 

This research was conducted at the Center for Nanophase Materials 
Sciences, which is sponsored at Oak Ridge National Laboratory by the 
Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. 
Department of Energy. 

8:40am SP+AS+MI+NS+SS-MoM2 Development of Synchrotron X-ray 
Scanning Tunneling Microscopy, Nozomi Shirato, Center for Nanoscale 
Materials at Argonne National Laboratory; H. Chang, Ohio University; M. 
Cummings, Advanced Photon Source at Argonne National Laboratory; S.W. 
Hla, Center for Nanoscale Materials at Argonne National Laboratory; V. 
Rose, Advanced Photon Source at Argonne National Laboratory 

Advancements of scanning probe microscopy have been contributing to 
broaden fundamental understating of surface physics. By combining high 
intense X-ray beam as a probe and a functionalized tip as a detector, 
synchrotron X-ray scanning tunneling microscopy has been developed in 
Advanced Photon Source at Argonne National Laboratory. The recent 
studies demonstrated the technique has capabilities to extract chemical 
information with sensitivity at the atomic limit [1] and localized magnetic 
contrast by utilizing polarized beams [2]. Furthermore, at Argonne, in order 
to fully exploit potentials of the microscope, a dedicated beamline is under 
construction. The soft X-ray beamline has the energy range of 400 to 1600 
eV and is equipped with a polarizer and focusing optics. The capabilities of 
the beamline will benefit the communities to explore chemical, magnetic 
and electronic properties of materials at atomic resolution. 

References 

[1] N. Shirato et al., Nano Letters 14, 6499 (2014). 

[2] A. DiLullo et al., J. Synchrotron Rad. 23, 574 (2016). 

9:00am SP+AS+MI+NS+SS-MoM3 Development and Integration of a 
Universal SPM head: Design Criteria and Challenges, B. Guenther, Sigma 
Surface Science GmbH, Germany; J. Hilton, Mantis Deposition; A. Feltz, 
Sigma Surface Science GmbH; Andreas Bettac, Sigma Surface Science 
GmbH, Germany 

Recently we have developed an SPM microscope head that merges the 
needs for high resolution STM/QPlus1-AFM and at the same time satisfies 
the requirements for integration into different cryogen environments 
including tip and sample handling. 

The new SPM head was integrated into different platforms, e.g. in a UHV 
Helium Flow Cryostat system for temperatures <10K and in a 3He Magnet 
Cryostat UHV system for high magnetic fields (±12T) and temperatures 
<400mK. 

This contribution focuses on design aspects and challenges for the new 
SPM head with respect to spatial restrictions, sample sizes/standards, 
QPlus and STM signal shielding as well as on first results (STM, STS and 
QPlus) obtained with the different instrumental setups. 

[1] F. J. Giessibl, Applied Physics Letters 73 (1998) 3956 

9:20am SP+AS+MI+NS+SS-MoM4 How Soft Is a Protein? Stress-Strain 
Curve of Antibody Pentamers with 5 pN and 50 pm Resolutions, Alma 
Perrino*, Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana 
Ines de la Cruz 3, 28049 Madrid, Spain; R. Garcia, Instituto de Ciencia de 
Materiales de Madrid, CSIC,, Spain 

Understanding the mechanical functionalities of complex biological 
systems requires the measurement of the mechanical compliance of their 
smallest components. Here, we develop a force microscopy method to 
quantify the softness of a single antibody pentamer by measuring the 
stress-strain curve with force and deformation resolutions, respectively, of 
5 pN and 50 pm [1]. The curve shows three distinctive regions. For 
ultrasmall compressive forces (5-75 pN), the protein’s central region shows 
that the strain and stress are proportional (elastic regime). This region has 
an average Young modulus of 2.5 MPa. For forces between 80 and 220 pN, 
the stress is roughly proportional to the strain with a Young modulus of 9 
MPa. Higher forces lead to irreversible deformations (plastic regime). Full 
elastic recovery could reach deformations amounting 40% of the protein 
height. The existence of two different elastic regions is explained in terms 
of the structure of the antibody central region. The stress-strain curve 
explains the capability of the antibody to sustain multiple collisions without 
any loss of biological functionality. 

[1] Alma P. Perrino and R.Garcia. How soft is a protein? Stress-Strain curve 
of antibody pentamers with 5 pN and 50 pm resolutions. Nanoscale, 
10.1039/C5NR07957H (2016) 

9:40am SP+AS+MI+NS+SS-MoM5 AVS Medard W. Welch Award Talk: 
Action Spectroscopy: Characterizing Molecules at Surfaces and its 
Dynamics, Maki Kawai†, Institute for Molecular Science, Japan; Y. Kim, 
RIKEN Surface and Interface Science Laboratory, Wako, Saitama, Japan; K. 
Motobayashi, Nagoya Institute of Technology, Japan; H. Ueba, Toyama 
University, Japan INVITED 

STM is a useful tool for spectroscopy utilizing its ultimate spatial resolution. 
Electronic and vibrational information that STS and inelastic electron 
tunneling spectroscopy (IETS) carries is not only the reflection of the static 
spectroscopic information but also related to dynamical phenomena as 
motion or reaction of molecules induced by the excitation of molecular 
states. Action spectroscopy is the method to related the action of 
molecules induced and is utilized to identify the quantum states of the 
molecules. Dynamical information includes as how molecular vibrations 
can couple with the relevant dynamical processes [1,2]. I will present 
typical eamples of how the fundamental excitation of vibration modes is 
coupled with chemical reactions at surfaces. 

References: 

[1] Y. Kim, K. Motobayashi, T. Frederiksen, H. Ueba and Maki Kawai, 
Profress in Surface Science 90 (2015) 85-143, and the references within. 

[2] K. Motobayashi, Y. Kim, M. Ohara, H. Ueba and Maki Kawai, Surf. Sci. 
634 (2016) 18-22. 
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10:40am SP+AS+MI+NS+SS-MoM8 Near-Field Spectroscopy and Imaging 
of Single Nanoparticles, Yohannes Abate, D. Seidlitz, A. Fali, S. Gamage, 
V.E. Babicheva, V.S. Yakovlev, M.I. Stockman, Georgia State University; R. 
Collazo, D. Alden, North Carolina State University; N. Deitz, Georgia State 
University INVITED 

We investigate nanoscale phase separation on single InGaN QDs and 
nanostructures by using high-resolution s-SNIN (scattering type scanning 
near-field infrared nanoscopy) technique in the mid-IR spectral region. We 
fabricated patterned nanolayers down to few atomic layers thick that allow 
determination of the near-field infrared response of InGaN/InN/GaN 
heterostructures quantitatively. We first calibrate the near-field IR 
amplitude contrast as a function of composition and thickness of the 
semiconductor nanolayers and QDs. We then use this quantitative leads to 
identify phase separation in single QDs. An advanced theoretical model is 
developed to guide the experimental results. Unlike previous models that 
consider the probe conical tip as approximate point dipoles or spheroids, 
our model considers the full geometry of the tip and all the sample and 
substrate layers. 

11:20am SP+AS+MI+NS+SS-MoM10 Atomically-resolved Three-
dimensional Structures of Electrolyte Aqueous Solutions near a Solid 
Surface, Daniel Martin-Jimenez, E. Chacon, Instituto de Ciencia de 
Materiales de Madrid, CSIC, Spain; P. Tarazona, IFIMAC Condensed Matter 
Physics Center, UAM, Spain; R. Garcia, Instituto de Ciencia de Materiales de 
Madrid, CSIC, Spain 

Atomic-resolution three-dimensional images of electrolyte solutions near a 
mica surface demonstrate the existence of three types of interfacial 
structures [1-3]. At low concentrations (0.01-1 M), cations are adsorbed 
onto the mica until charge neutrality is reached. The cation layer is topped 
by a few hydration layers while anions are excluded from the mica surface 
[4]. At higher concentrations, the interfacial layer extends several 
nanometers into the liquid. It involves the alternation of cation and anion 
planes. Classical Fluid Density Functional calculations show that water 
molecules are a critical factor for stabilizing the structure of the ordered 
interfacial layer. The interfacial layer compatibilizes a crystal-like structure 
with liquid-like ion and solvent mobilities. At saturation, some ions 
precipitate and small ionic crystals are formed on the mica. The three-
dimensional images have been acquired at 300 K. 

[1] E. T. Herruzo, H. Asakawa, T. Fukuma, and R. Garcia, Nanoscale 5, 2678-
2685 (2013). 

[2] K. Kobayashi et al.The Journal of Chemical Physics 138, 184704 (2013) 

[3] T. Fukuma et al.Physical Review B 92, 7 (2015). 

[4] M. Ricci, P. Spijker and K. Voitchovsky Nat. Commun. 5, 4400 (2014). 

11:40am SP+AS+MI+NS+SS-MoM11 Super-resolution Optical and 
Chemical Imaging of Organic Thin Films using Tip-enhanced Near-Field 
Optical Microscopy, A.L. Heilman, R. Hermann, Michael Gordon, University 
of California at Santa Barbara 

Sub-diffraction-limited (super-resolution) optical and chemical 
characterization of organic surfaces using a custom-built tip-enhanced 
near-field optical microscope with side-on and attenuated total reflectance 
(ATR) excitation and collection will be discussed. ATR illumination is 
combined with an Au optical antenna tip to show that (i) the tip can 
quantitatively transduce the optical near-field (evanescent waves) above 
the surface by scattering photons into the far-field, (ii) the ATR geometry 
enables excitation and characterization of surface plasmon polaritons 
(SPPs), whose associated optical fields can enhance Raman scattering from 
coumarin-6 (C6) and copper phthalocyanine (CuPc) films, and (iii) SPPs can 
be used to plasmonically excite the tip for super-resolution chemical 
imaging of patterned C6 and CuPc via tip-enhanced Raman spectroscopy 
(TERS). ATR-illumination TERS is quantitatively compared with the more 
conventional side-on illumination scheme using both experiment and FDTD 
optical simulations. In both cases, spatial resolution was better than 40 nm 
and tip on/tip off Raman enhancement factors were >6500. ATR 
illumination was shown to provide similar Raman signal levels at lower 
'effective' pump powers due to additional optical energy delivered by SPPs 
to the active region in the tip-surface gap. Additional observations, such as 
the distance scaling of Raman enhancement and inelastic scattering 
generated by the plasmonic tip, as well as tip-enhanced 
photoluminescence imaging of patterned phthalocyanine films at spatial 
resolutions better than 20-30 nm, will be presented. 
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