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1:40pm PS+AS+SS-MoA1 Atomic-scale Analyses of Plasma Etching for 
Unconventional Materials in Microelectronics, Satoshi Hamaguchi, K. 
Karahashi, Osaka University, Japan INVITED 

As the sizes of semiconductor devices continue to diminish and are now 
approaching atomic scales, the downsizing of transistors following Moore’s 
law is bound to end in the near future. However, the continuing market 
demand for higher performance and lower energy consumption of large-
scale integrated (LSI) circuits has driven invention of new device 
technologies such as three-dimensional (3D) device structures and devices 
based on non-silicon materials. Manufacturing of these non-conventional 
devices also poses new challenges for processing technologies. For 
example, magnetic materials used in magnetoresistive random-access 
memories (MRAMs) cannot be etched efficiently by the existing reactive 
ion etching (RIE) technologies, which has so far limited the level of 
integration of MRAM devices. The modern near-atomic-scale devices also 
require atomic level precision in their manufacturing processes, which has 
also driven new technologies such as atomic layer deposition (ALD) and 
atomic layer etching (ALE). In this study, we shall review our recent work 
on analyses of etching selectivity and surface chemical reactions for 
magnetic materials [1,2] metal oxides[3,4], Si-based materials [4] as well as 
damage formation mechanisms [6,7] due to ion bombardment during RIE 
processes. In our analyses, we use multi-beam injection experiments [8] 
and molecular dynamics (MD) simulations to emulate elementary 
processes of plasma-surface interactions that take place in RIE processes. 
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2:20pm PS+AS+SS-MoA3 Plasma Wall Interactions: Y2O3 Wall Interaction 
in Cl2 Plasma Etching of Si and NF3 Plasma Cleaning, Tianyu Ma, T. List, 
V.M. Donnelly, University of Houston 

The walls of a plasma etching chamber play a critical role in causing 
variability of processing metrics such as rate, profile shape and selectivity. 
Small changes in the nature of the chamber wall surfaces can affect radicals 
sticking coefficients, recombination probabilities, and other heterogeneous 
reactions that will cause changes in the number densities of species in the 
plasma, which in turn affects the process. Therefore, a stable chamber wall 
material is essential for plasma processes, and in particular plasma etching. 
Compared to traditional alumina and silica wall material, Y2O3 has high 
chemical stability and extending lifetime, making it one of the preferred 
wall materials in etching systems. Consequently, studies were performed in 
a chamber with Y2O3-coated walls to determine time-dependent variations 
in the number densities of species in inductively coupled Cl2/Ar and NF3/Ar 
plasmas. Si was etched in Cl2 plasmas, after which, the wafer was removed 
and an NF3 plasma was used to remove etching products that deposited on 
the walls. This etch-clean procedure was repeated many times, simulating 
an integrated circuit manufacturing etch process. Optical emission 
spectroscopy (OES) and Langmuir probe analysis were performed to 
characterize plasma. Y2O3-coated coupon pieces exposed to the plasma 
were examined by X-ray photoelectron spectroscopy (XPS). Number 
densities of Cl2, Cl, O, and F were obtained with rare-gas actinometry 
during the entire etching and cleaning cycles. Emissions from Si, SiCl, SiCl2, 

SiCl3, SiF, and N2 were also recorded. After exposure to the NF3 plasma, Cl 
number densities are relatively low when no substrate bias is placed on the 
Si substrate. As soon as bias is initiated, Cl number density rises steeply at 
first and then slowly maximizes. This is attributed to then displacement of F 
on the walls with a SiClx containing layer. Apparently Cl on its own cannot 
remove F efficiently, but the reaction of Si-containing etching products 
produces SiF surface species that desorb and are observed as transient SiF 
emission in the first moments of etching. Cl recombination on this surface 
is much lower than on the fluorinated Y2O3 surface. Once prepared by 
etching Si with bias, the Cl number density remains high if bias is 
extinguished and etching nearly stops. The higher recombination 
coefficient on fluorinated surfaces is attributed to the longer residence 
time of physisorbed Cl, caused by the attraction to positively charged Y 
sites that are created when Y forms mainly ionic bonds with F. 

2:40pm PS+AS+SS-MoA4 Novel atomic order CD Control Technology by 
Fusion of Quasi-ALE and ALD, Yoshihide Kihara, T. Hisamatsu, Tokyo 
Electron Miyagi Limited, Japan; T. Oishi, S. Ogawa, H. Watanabe, Tokyo 
Electron Miyagi Limited; A. Tsuji, M. Honda, Tokyo Electron Miyagi Limited, 
Japan 

In the recent years continuous scaling has required the use of multiple 
mask patterning technologies such as double and quadruple patterning, 
and increasingly thin EUV mask films are being planned to be used in the 
near future. In the patterning process, the fabrication of multilayer films 
requires the precision of atomic layer level accuracy (within nm level). 
Some critical challenges that patterning schemes face includes thinning of 
mask materials, reduction of ARDE related CD-loading, and reduction of 
LER and LWR. This requires the realization of highly selective etch 
processes that can address the challenges without trade-offs in other 
process specifications. 

One method to increase the mask selectivity to enable mask thinning, 
which is one of the major patterning issues, Si-ARC is etched in a depositing 
condition which protects the resist mask surface, utilizing the material 
difference between the mask material and the antireflective layer (Si-ARC). 
However, to enhance selectivity, extra amount of the deposition can be 
generated. The amount of deposition flux fluctuates depending on the 
pattern density, leading to CD loading. In order to solve the tradeoff 
between selectivity and loading, we have proposed a Quasi- Atomic Layer 
Etching (Quasi-ALE) which is a modification of ALE to employ thin-film 
adsorption and activation by low ion energy [1]. In this paper, Quasi-ALE is 
applied to Si-ARC etch step to address three challenges; high selectivity, 
pattern-independent CD-loading, and vertical etch profiles. 

We have also proposed the combination of ALD with etch as CD-loading-
free CD control technique [2]. By combining ALD and Quasi-ALE, excellent 
CD controllability was achieved to address the entire patterning process 
issues without tradeoffs. In the presentation, various merits of the Fusion 
Process, which is a combination of Quasi-ALE and ALD, in patterning 
process, will be introduced. Fusion Process has a significant potential to 
solve critical challenges in the patterning process of N7, N5 and beyond. 
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3:00pm PS+AS+SS-MoA5 Development of a New Analysis Technique of 
Nanostructures Etched by Plasmas: Quasi In-Situ TEM EDX 
Characterization, Matthieu Serege, LTM, Univ. Grenoble Alpes, CEA-LETI; 
G. Cunge, LTM, Univ. Grenoble Alpes, CEA-LETI, France; L. Vallier, E. Latu-
Romain, LTM, Univ. Grenoble Alpes, CEA-LETI; O. Joubert, LTM, Univ. 
Grenoble Alpes, CEA-LETI, France 

As the size of integrated circuit continues to shrink, plasma processes are 
more and more challenged and show limitations to etch nanometer size 
features in complex stacks of thin layers. The achievement of anisotropic 
etching relies on the formation of passivation layers on the sidewalls of the 
etched features which act like a protective film that prevents lateral 
etching by the plasma radicals. However, this layer also generate a slope in 
the etch profile and it’s difficult to control the layer thickness. Another thin 
layer called “reactive layer” is also formed at the bottom of the feature 
where the energetic ion impact mix the material to be etched with the 
plasma radicals. Etch products are formed allowing a high etch rate of the 
silicon substrate. It starts to be realized that controlling the thickness of 
this reactive layer is the key to achieve very high selective processes. 
Indeed, accurate etch stop on an ultra-thin layer is only possible if the 
thickness of this stop layer is higher than the thickness of the reactive layer 
otherwise damages are created underneath the stop layer. 
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A better understanding of these layers chemical nature, thickness and 
deposition mechanism is mandatory, but the main problem is that the 
layers to be analyzed are chemically highly reactive because they contain 
large concentrations of halogens and they get immediately modified 
(oxidized) when exposed to ambient atmosphere. 

In this work we develop an original, simple and extremely powerful 
approach to observe passivation layers quasi in-situ (i.e. without air 
exposure): After plasma etching, the wafer is transported under vacuum 
inside an adapted suitcase to a deposition chamber where it is 
encapsulated by a metallic layer (magnetron sputtering PVD). Then, the 
encapsulated features can be observed ex situ without chemical / thickness 
modification using FIB-SEM (specimen preparation) coupled with a TEM-
EDX analysis: HRTEM observation provides an extremely precise 
measurement of the passivation layer and encapsulation morphology. In 
parallel, STEM-EDX is used to map the main atomic element in our 
specimen, supplying qualitative information on the layer chemical 
composition. STEM-EDX is also used in profile mode to give us more 
accurate quantitative analysis. We are able to estimate the (relative) 
quantitative atomic concentration along a line scan profile on the feature 
sidewalls. 

The measurements relatively fast, provide accurate analysis at the 
nanoscale, and are highly promising to better understand plasma etching 
processes. Therefore, this technique will be very helpful to develop 
innovative processes controlled at the nanometer range. 

3:20pm PS+AS+SS-MoA6 Atomistic Simulations of He Plasma Modification 
of Si/SiN Thin-Films for Advanced Etch Processes, Vahagn Martirosyan, 
LTM, Univ. Grenoble Alpes, CEA-LETI, France; E. Despiau-Pujo, CNRS - LTM, 
France; O. Joubert, LTM, Univ. Grenoble Alpes, CEA-LETI, France 

Due to high ion bombardment energies and significant fragmentation rates, 
conventional continuous 

wave (CW) plasma processes are not able to selectively etch ultra-thin films 
without damaging the 

active layers of advanced nanoelectronic devices (e.g. FDSOIs, FinFETs). In 
particular, silicon nitride 

or low-k spacers etching must be performed with nanoscale-precision 
without creating defects to the 

underlayer substrate, to preserve device performances and be compatible 
with epitaxial steps. To 

solve this problem, one possible alternative is to use a recently developed 
etch technology, which 

consists of two steps [1]. In the first step, the material to be etched is 
exposed to a hydrogen (H 2 ) or 

helium (He) ICP or CCP plasma; in the second step, the modified material is 
chemically etched by wet 

cleaning or exposure to gaseous reactants only. 

Due to the complexity of plasma-material interactions, the development of 
such a new etch approach 

requires a more detailed understanding of the fundamental mechanisms 
involved in the process. 

Therefore, we develop Molecular Dynamics (MD) simulations to study the 
Si-He and Si-N- He systems 

and provide an overview of the reaction processes at the atomic scale. The 
objective is to understand 

precisely the role of ion energy in the self-limited ion implantation, and to 
determine the relationship 

between the flux/energy of plasma species (He + ) bombarding the surface 
and its structural/chemical 

modifications. 

In this work, we investigate the interaction between helium plasma species 
(He+ ions) and 

silicon/silicon nitride via MD simulations, by studying the influence of ion 
energy (5-100eV) and ion 

dose on the substrate modification. For He/Si interactions, simulations 
show an initial He implantation 

followed by the formation of a stable modified layer at steady state, 
composed of two parts: a Si-He 

mixed amorphous layer and a thin sublayer, which is crystalline but 
enriched in helium. According to 

our results, the higher is the ion energy, the more rapid is the 
contamination and the thicker is the 

amorphous layer. Few or no Si sputtering is observed for energies lower 
than 100eV, confirming that 

He plasmas can modify/weaken the material on a precise depth without 
etching it. Amorphisation of 

the material leads to the rupture of crystalline Si-Si bonds and to the 
creation of a less dense modified 

layer, facilitating its subsequent removal by wet or dry etching. 
Mechanisms of helium 

retention/desorption, as well as comparisons between He/Si and He/SiN 
interactions, will be 

discussed during the presentation. 
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4:20pm PS+AS+SS-MoA9 Patterned Chromium Hard Mask Etching in a 
Two Reactant Gas for Bit Patterned Media Template Fabrication, Daniel 
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Plasma-based dry etching is one of the most important nanofabrication 
methods for transferring full-wafer patterns. As feature sizes approach the 
single digit nanometer regime, there is an urgent need to develop a 
comprehensive and detailed understanding of the associated etching 
mechanisms. Additionally, challenges in obtaining high anisotropy, high 
selectivity, and robust critical dimension control must be addressed. 

Highly selective chromium etching masks are an area of particular interest. 
Chromium has a widespread utility in not only manufacturing 
photolithography masks, but also in fabricating high-resolution 
nanoimprint templates. For example, we use it as a highly selective hard 
mask when etching SiO2 to achieve Bit Patterned Media templates towards 
sub-5nm features (7Tb/in²). 

To date, there have been few investigations into patterned chromium 
films. The limited studies available involve micron-sized features and 
patterning by the erosion of polymer masks, which make extrapolation to 
the single-digit nano regime very difficult. In this work, we bridge the gap 
for nanoscale-patterned films. We etch a patterned 20nm layer of 
chromium in low pressure and low power Cl2/O2 plasmas. We investigate 
the profile evolution of features ranging from 15nm- to 200nm in pitch. 
Previous work in etching blanket chromium films revealed that chromium 
etch rate was influenced by substrate temperature and Cl2/O2 flow [1]. 
Here, we vary percent O2 flow (1%, 50%, 87%) and temperature (-50°C, 
+20°C) to explore the effects on lateral etching mechanisms, etch lag, and 
anisotropy. Using a highly selective HSQ mask for etching the chromium 
allows us to better determine the involved etching mechanisms. High-
resolution micrographs of thin film cross-sections show significantly 
enhanced anisotropy at low temperatures. 

Additionally, the unique etching chemistry of chromium must be 
considered when evaluating the material as a mask. Most materials form 
multiple volatile binary compounds during the etching process. Chromium, 
on the other hand, forms a single ternary compound: chromyl chloride. 
This enables us to study the effect of two-reactant gas chemistry on the 
etched feature profile. Results indicate that gas phase transport and 
surface mass transport of oxygen and chlorine are influential to profile 
shapes. Moreover, the effective local oxygen concentration inside the 
trench is important, and surface-dominated reactions highly affect the 
profile. Chlorine rich and chlorine poor chemistries promote very different 
surface reactions. 

[1] D. Staaks, et al., Low temperature dry etching of chromium towards 
control at sub-5 nm dimensions, Nanotechnology 2016, submitted 
manuscript 
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4:40pm PS+AS+SS-MoA10 Alternative Solutions for Nanometric-Precision 
Etching: H2 Plasmas Modification of Si/ SiN Thin-Films, Emilie Despiau-
Pujo, V. Martirosyan, O. Joubert, LTM - CNRS/Univ Grenoble Alpes/CEA, 
France 

Consisting of several ultrathin layered materials, advanced transistors 
(FDSOI, FinFET) must be etched with a nanometric precision and nearly 
infinite selectivity to preserve the electronic properties of active layers (e.g. 
the silicon channel), a challenge which cannot be addressed by 
conventional CW plasma processes. To achieve uniform and damage-free 
etching of multi-layered transistors, an alternative etch approach has been 
recently proposed, consisting in two steps. In a first step, the film to be 
etched is modified in volume by exposition to a hydrogen or helium 
conventional CCP or ICP; in a second step, the modified layer is selectively 
removed by wet cleaning or exposure to gaseous reactants only. Such a 
two-steps process showed promising results for silicon nitride spacers 
etching [1]. To assist the development of this new technique, Molecular 
Dynamics (MD) simulations - coupled to experiments - are used to 
investigate the interactions between H2 plasmas and Si/SiN films. These 
atomic-scale simulations aim at better understanding the relationship 
between the flux/energy of plasma species (Hx+ ions, H radicals) 
bombarding the surface and its structural/chemical modifications. 

Although one material of interest is silicon nitride, the study of Si-H 
systems constitutes a first step to understand the impact of ion energy (5-
100 eV) and ion dose on the substrate modification and self-limited ion 
implantation. Simulations of cumulative Hx+ (x=1-3) ion bombardment 
show a rapid hydrogenation of Si followed by the formation of a stable 
modified layer at steady state. This modified layer is composed of a thick 
amorphous Si-H mixed layer and a thin sublayer, quasi-crystalline but 
enriched in hydrogen. As hydrogen is highly chemically reactive, ion 
implantation leads to the rupture of crystalline Si-Si bonds and to the 
creation of SiH, SiH2, SiH3 covalent bonds in the modified material. At the 
bottom of the modified layer, hydrogen tends to saturate the dangling 
bonds of the amorphous silicon and to create SiH3 bonds, thus fracturing 
the substrate into a modified hydrogenated layer weakly bound to the 
underlying crystalline material (Smartcut-like mechanism). The influence of 
ion dose, ion energy and ion type on the modified layer thickness (and thus 
on the subsequent etch precision) are discussed. Comparisons between 
pure ion implantation and exposition to various H2 plasma conditions 
(simulated by bombarding the Si/SiN substrates with both Hx+ ions and H 
radicals) are also presented. [1] N. Posseme, O. Pollet, S. Barnola, Applied 
Physics Letters 105, 051605 (2014) 

5:00pm PS+AS+SS-MoA11 Plasma Dynamics at the Surface Interface in 
Low Pressure Capacitively and Inductively Coupled Plasmas, Martin Blake, 
D. O'Connell, University of York, UK; A.R. Gibson, LPP, CNRS, Ecole 
Polytechnique, Université Paris-Saclay, France; T. Gans, University of York, 
UK 

The plasma-surface interface in low temperature, low pressure plasmas 
used for industrial 

wafer processing is difficult to characterise. However, understanding the 
plasma dynamics 

at this interface is key for further optimisation of industrial plasma 
processes. Of particular 

relevance are the densities of reactive species, such as atomic oxygen, in 
this region. In this 

work a methodology has been developed based on newly augmented fast 
optical 

techniques which can probe reactive species densities in the wafer region 
without the need 

for expensive laser equipment. This technique, known as energy resolved 
actinometry 

(ERA)[1], utilises phase resolved optical emission spectroscopy (PROES) 
measurements of the 

direct and dissociative electron-impact excitation dynamics of three 
distinct emission lines, 

750.4 nm (argon, added in small concentrations as a tracer gas) and 777.4 
nm, 844.6 nm 

(atomic oxygen). Through the ratio of the excitation functions and their 
energy dependence 

we determine both the atomic oxygen density and the mean electron 
energy above the 

electrode surface. 

In this work ERA has been applied to measure atomic oxygen densities and 
local mean 

electron energies in a low pressure (1 – 100 Pa) oxygen plasma produced in 
a GEC reference 

cell system [2], operated at 13.56 MHz in both capacitive and inductive 
modes at power 

inputs ranging from 50 – 500 W. Additional characterisation of the plasma-
surface interface 

is carried out through the use of a retarding field energy analyser (RFEA) to 
measure the ion 

energy distribution at the surface. The combination of both approaches 
allows for 

information on the neutral and ion dynamics in the surface region, both of 
which are known 

to be important for process outcomes. 

A two-dimensional hybrid plasma simulation code is used to simulate the 
same conditions in 

order to improve understanding of the experimental results. 
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