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8:20am EM+NS+PS+SS+TF-MoM1 Development of AlGaN based UV Laser 
Diodes, Ronny Kirste, Adroit Materials; B. Sakar, A. Franke, NCSU; J. 
Tweedie, Adroit Materials; Z. Bryan, I. Bryan, NCSU; S. Mita, Adroit 
Materials; R. Collazo, Z. Sitar, NCSU INVITED 

UV laser diodes are widely desired for many important applications such as 
chemical and biological sensing, non-line of sight communications, and 
DNA tagging. Design and fabrication of AlGaN based laser diodes is the 
most promising pathway for next generation UV lasers but challenges for 
these devices are many including low n- and p-conductivity, absorbing 
injection layers, and non-ohmic contacts. Here, we present recent 
advances in the growth and fabrications of UV laser diodes. The 
presentation will cover the most important steps that are necessary to 
achieve electrically injected UV laser diodes. These include: AlGaN epitaxy, 
doping, fabrication, and design. 

As an advancement over most existing approaches, we pursue the growth 
of our device structures on single crystalline AlN substrates which allows 
for low dislocation densities < 104 cm2. Any such device fabrication is 
started with the growth of an AlN homoepitaxial layer. It is demonstrated 
that this epitaxial layer can be grown with a dislocation density that follows 
that of the substrate and no interface between layer and substrate is 
observed in TEM, which indicates true homoepitaxy. Subsequent growth of 
AlGaN layers with Al content ranging 50-85% is shown to be 
pseudomorphic. An excellent control of the AlGaN surface morphology is 
demonstrated using a supersaturation scheme and bilayer steps as needed 
for highly efficient MQWs are achieved. MQWs for emission at wavelengths 
ranging 240-280 nm are discussed and optically pumped lasing in this 
region is demonstrated. The chosen approach to grow on AlN is validated 
by realizing MQWs with an IQE exceeding 90%. In order to achieve 
electrically injected UV lasing, Al-rich AlGaN is doped and free electron 
concentrations for the n-cladding with 80% Al-content is shown to be 
around 8x1018 cm-3. In contrast, p-doping of AlGaN is much more 
challenging because of the high activation energy of the Mg acceptor. 
Consequently, achievable free hole concentration and conductivity of the 
p-cladding are low. We discuss how these epitaxial layers can be used for 
realizing laser diodes. Experimental work is supported by simulations and 
used to direct the UV laser design. Finally, we present electrical data and 
electroluminescence spectra from fully fabricated diodes and discuss the 
future challenges that need to be addressed to demonstrate the first 
electrically injected UV laser diode. 

9:00am EM+NS+PS+SS+TF-MoM3 Low-Temperature PA-ALD Growth 
Technology for Group III-Nitride Nano-heterostructures and their 
(Opto)Electronic Device Applications, Necmi Biyikli, A. Haider, S. Kizir, P. 
Deminskyi, M. Yilmaz, S. Bolat, A. Celebioglu, A.K. Okyay, T. Uyar, Bilkent 
University, Turkey; F. Buyukserin, S. Altuntas, TOBB University of Economics 
and Technology, Turkey; I. Yilmaz, K. Khaled, Turgut Ozal University, Turkey
 INVITED 

Being initially developed for an entire different area of use, atomic layer 
deposition (ALD) became a widespread tool to grow functional films and 
conformal ultra-thin coatings for numerous applications. Based on self-
limiting surface reactions, ALD enabled the low-temperature growth of 
various materials including dielectrics, semiconductors, and metals. 
Featuring the capability to deposit wafer-scale uniform semiconductor 
films at relatively low-temperatures with sub-monolayer thickness control 
and ultimate conformality makes ALD attractive for the semiconductor 
community. Towards this end, precursors and growth recipes are 
developed to deposit crystalline thin films for compound and elemental 
semiconductors. Conventional thermal ALD techniques as well as plasma-
assisted and radical-enhanced ALD techniques have been exploited to 
achieve decent film quality compatible with device applications. 

In this presentation, we give an overview of our research efforts on plasma-
assisted ALD-based nanoscale semiconductor research focusing on III-
nitrides. We have combined our low-temperature thin-film growth recipes 
with various nanoscale templates and exploited the conformality feature of 
ALD technique to fabricate nitride nanostructures. Electrospun polymeric 
nanofibers have been used to produce flexible polymer/III-nitride core-

shell structures which might be used for flexible optoelectronics. In 
addition, hollow-core multi-shell III-nitride nano-heterostructures are 
demonstrated as well. Anodized alumina (AAO) templates were utilized to 
fabricate large-area ordered III-nitride nanostructures including radial 
heterostructures. Extensive growth and fabrication recipe development 
and materials characterization details will be presented. 

The synthesized III-nitride nanoscale semiconductor materials might find 
applications in a vast amount of applications including physical and 
chemical sensing, piezo-electric energy harvesting, photocatalysis, 
nanoscale and flexible (opto)electronics. As proof-of-principle device 
demonstrations, we have shown nanofibrous GaN/InN-based 
photocatalysis, GaN/InN-based chemical (gas) sensing, and nanoscale GaN-
based UV photodetectors. 

9:40am EM+NS+PS+SS+TF-MoM5 Structural Qualities of GaN Grown on 
AlN Buffer Layer by MEPA-MOCVD, Daniel Seidlitz, I. Senevirathna, A. Fali, 
Y. Abate, N. Dietz, Georgia State University; A. Hoffmann, Technical 
University Berlin, Germany 

This study focusses on the influence of Aluminum nitride (AlN) buffer layers 
on the structural and optoelectronic properties of subsequent overgrown 
Gallium nitride (GaN) layers, using Migration Enhanced Plasma-Assisted 
Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). 

One challenge in group-III nitride growth is the lattice mismatch between 
the substrate (e.g. sapphire (Al2O3), silicon or silicon carbide) and the group 
III-Nitride layer as for example GaN. Lattice mismatch imposes compressive 
strain/stress and influences the crystal quality of subsequent grown group-
III nitrides. Inserting an AlN interlayer between the sapphire substrate and 
the GaN epilayer, transitions the oxygen surface chemistry to a nitrogen 
surface chemistry, separating surface chemistry related defects from lattice 
mismatch induced defects, which leads to an improved crystalline quality 
of the overgrowning GaN layer. 

All group III-Nitride layers are grown on sapphire substrates using MEPA-
MOCVD. The system design allows the growth of GaN at lower 
temperatures by using plasma activated nitrogen species (N*/NH*/NHx*) 
as nitrogen precursor, which are generated by a radio-frequency hollow 
cathode plasma source (MEAglowTM) scalable from 20W up to 600W. The 
tunable nitrogen plasma source enables to control the kinetic energies of 
the active nitrogen species in the afterglow region to be directed at the 
growth surface, where they interact with metalorganic (MO) precursors. 
The growth process parameter set includes: reactor pressure, growth 
temperature, pulsed injection of MO- and nitrogen plasma fluxes, plasma 
species and their energies. 

The structural properties of the AlN buffer layers (e.g. local ordering, grain 
size, surface topography) are analyzed by Atomic Force Microscopy (AFM) 
and Raman spectroscopy. The film thickness and optoelectronic properties 
of the AlN and GaN layers are studied Fourier Transform infrared (FTIR) and 
reflectance spectroscopy. Results are presented on the structural and 
optoelectronic properties of the GaN layers as function of the process 
parameters and the properties of the underlying AlN buffer layer. 

10:00am EM+NS+PS+SS+TF-MoM6 Optical and Electrical Characteristics of 
Gamma-ray Irradiated AlGaN/GaN Heterostructures, MinPrasad Khanal, 
B. Ozden, K. Kim, S. Uprety, V. Mirkhani, L. Shen, K. Yapabandara, A.C. Ahyi, 
M. Park, Auburn University 

AlGaN/GaN high electron mobility transistors (HEMTs) show their potential 
immunity toward high energy radiation related damages, making them 
promising candidates for the radiation hard electronics. The degradation in 
performance of these devices under radiation exposed environment might 
be due to different possible effects in the device structure such as 
strain/stress, generation of dislocation, carrier removal and reduction in 
two-dimensional-electron-gas (2DEG) concentration.The AlGaN/GaN epi 
structures grown on 6 inch Si wafer were used and irradiated with 120 
MRad doses of gamma-ray produced from 60Co source. The semi-
transparent (with 10-15 nm thickness) Ni Schottky diodes and circular 
HEMT devices were fabricated using un-irradiated and gamma-ray 
irradiated AlGaN/GaN epi structures. In the case of HEMT devices, Ti/Al/Ni 
(30/180/40 nm thickness) for the ohmic contact and Ir (15 nm thickness) 
for the gate contact formation were deposited using dc magnetron 
sputtering system. Spectroscopic photo current-voltage (IV) measurements 
both with sub-band gap and above band-gap illumination, micro-
Raman/photoluminescence spectroscopy, and transistor characterizations 
were performed. The spectroscopic photo IV measurements were carried 
out by applying the variable wavelength ultra-violet (UV) and visible light 
from Xenon lamp source under reverse bias condition. Sub-bandgap 
illumination (800 nm-400 nm) provided the information about sub-
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bandgap energy levels of defects by relating the change in photocurrent 
level in response to the applied light spectrum. On the other hand, above 
bandgap illumination (280 nm-400 nm) utilizes the fact that the 
penetration depth of a light varies as a function of wavelength. The result 
showed reduction in photocurrent on the gamma-ray irradiated samples in 
comparison to the un-irradiated samples, revealing the possibility of 
creation of extra defects, and hence, decreasing the carrier concentration 
in the 2DEG. Micro-Raman and photoluminescence (PL) spectroscopic 
analysis on both the samples were also performed and the results show no 
substantial change in their spectra, supporting the conclusion from 
previous scientific reports of radiation resistance of the HEMTs on their 
bulk structure level. Decrease in drain current and transconductance were 
observed from the transistor IV measurements, indicating a possible 
reduction in carrier concentration. It can be concluded that the reduction 
on photocurrent, drain current level and transconductance after the 
gamma-ray irradiation are due to the possible creation of some extra 
defects and decrease of carrier concentration on 2DEG channel. 

10:40am EM+NS+PS+SS+TF-MoM8 Seeded Regrowth for Production of 
AlN and GaN Substrates by HVPE, Jacob Leach, K. Udwary, G. Dodson, K. 
Gentry, P. Quayle, T. Schneider, H. Splawn, K. Evans, Kyma Technologies, 
Inc. INVITED 

Freestanding GaN and freestanding AlN remain the substrates of choice for 
the highest performing vertical high voltage switching devices (>1200V) 
and UV optoelectronics, respectively. However, the cost of these substrates 
remains high, availability remains low, and the crystalline quality of these 
substrates varies depending on the growth technique employed. In 
particular, the electrical quality of GaN substrates and the UV transparency 
of AlN substrates depend on the specific growth conditions utilized and it 
remains a challenge to maintain high crystalline quality while 
simultaneously realizing high electrical quality or UV transparency. We 
proposed the use of hydride vapor phase epitaxy (HVPE) as a cloning 
technique to replicate the high crystalline quality of existing solvothermally 
grown GaN or physical vapor transport (PVT) grown AlN substrates while 
maintaining high electrical and optical quality. In this talk, we report 
Kyma’s recent results in the use of the HVPE replication technique for 
realizing both AlN and GaN substrates. 
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