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Nelson, Lawrence Livermore National Laboratory 

8:00am AC+AS+SA-ThM1 Covalency in Oxidized Uranium, James G. Tobin, 
University of Wisconsin-Oshkosh INVITED 

Actinides, the 5f elements and their compounds, alloys, and mixtures, are a 
crucially important part of modern technological societies. Moreover, 
uranium dioxide is the most widely used nuclear fuel for the generation of 
electricity. Yet, because of the complexity of the 5f/6d electronic structure 
in the actinides, a fundamental understanding of their physical behavior, in 
actinides in general and uranium dioxide in particular, has not been 
achieved. 

Theoretically, it has been proposed that covalency is an important part of 
the electronic structure of actinide dioxide, although some disagree. 
Experimentally, spectroscopic studies have been reported which support 
the hypothesis of 5f covalency. However, a crucially important and 
absolutely essential component has been missing: a systematic study 
where the nature of the oxidant is changed, so the specifics of the 5f and 
6d covalencies could be varied and monitored. The turning-on and turning-
off of an effect is the essence of a true benchmarking. The work reported 
here clearly and irrevocably establishes experimentally the strong presence 
of U 5f –O 2p covalency in the unoccupied density of states of UO2, the 
most important of our nuclear fuels. 

This comparative study will feature the isoelectronic systems uranium 
dioxide (UO2) and uranium tetrafluoride (UF4). While isoelectronic, both 
being U+4 5f 2 in the formal limit, they exhibit substantially different 
structures. UO2 is a fluorite (cubic) material, while UF4 is monoclinic. 
However, both exhibit very similar U L3 extended x-ray absorption fine 
structure (EXAFS) behavior, indicative of quantitatively similar interatomic 
distances. The result of this comparative study is that UF4 exhibits 
continued 6d covalency but the almost complete loss of 5f covalency, while 
UO2 clearly displays both strong 5f and 6d covalencies. Here we have direct 
experimental demonstration that 5f covalency is important in actinide 
oxides but can be lost with a more powerful oxidizing agent such as 
fluorine. 

To summarize: Using x-ray emission spectroscopy and absorption 
spectroscopy, it has been possible to directly access the states in the 
unoccupied conduction bands that are involved with 5f and 6d covalency in 
oxidized uranium. By varying the oxidizing agent, the degree of 5f 
covalency can be manipulated and monitored, clearly and irrevocably 
establishing the importance of 5f covalency in the electronic structure of 
the key nuclear fuel, uranium dioxide. 

Collaborators on this work include: S.-W. Yu, R. Qiao, W. L. Yang, C. H. 
Booth, D. K. Shuh, A. M. Duffin, D. Sokaras, D. Nordlund, and T.-C. Weng. 
[*See PHYSICAL REVIEW B 92, 045130 (2015)] 

8:40am AC+AS+SA-ThM3 An In Situ X-ray Diffraction Study of Plutonium 
Oxidation, Paul Roussel, W. Lake, AWE, UK 

X-ray diffraction was used to follow the oxidation of α-phase plutonium in 
oxygen at a pressure of 500 mbar. The composition of the growing oxide 
scale consisted of the trivalent cubic sesquioxide α-Pu2O3 and tetravalent 
fluorite dioxide PuO2. The hexagonal β-sesquioxide phase was not 
detected. The quantity and lattice parameters of the oxide phases were 
determined from Rietveld analysis of the diffraction patterns. The lattice 
parameters of both oxides were found to decrease with increasing oxide 
quantity. Decreasing lattice parameters occur from increasing oxygen anion 
concentration in each oxide phase. The rate of oxidation for the total oxide 
composition at various temperatures below 100 °C was found to be linear, 
indicative of possible moisture enhanced oxidation. A detailed analysis of 
the contributions of the individual oxide compositions will be presented. 
Post oxidation optical microscopy of the coherent oxide scale showed areas 
of thicker scale typical of island growth. When the oxidation reaction was 
allowed to proceed to form olive green spalled oxide, X-ray diffraction 
analysis of the powder showed it to consist as a mixture of both cubic oxide 
phases. 

Our initial XRD work presented at this meeting in 2012 suggested the initial 
oxide film grown on δ-plutonium might be amorphous. This work has been 

repeated using the XRD in-situ environmental reaction cell and the results 
will be presented. 

© British owned Crown Copyright 2016/AWE 

9:00am AC+AS+SA-ThM4 Advanced Applications of Synchrotron Sources 
to Describe Water Soluble Plutonium Colloids, Thomas Dumas, CEA, 
France; E. Dalodière, M. Virot, ICSM Marcoule; V. Morosini, CEA Marcoule; 
T. Chave, ICSM Marcoule; C. Hennig, Helmholtz Zentrum Dresden-
Rossendorf; T. Wiss, European Commission, Joint Research Centre (JRC), 
Institute for Transuranium Elements; D.K. Shuh, T. Tyliszcaak, Lawrence 
Berkeley National Laboratory; P. Moisy, CEA Marcoule; I. Nikitenko, ICSM 
Marcoule 

Colloidal species of Pu(IV) were shown to play a central role in the 
speciation of plutonium in various aqueous wastes and in biosphere [1-3]. 
However, a comprehensive understanding of the behavior and structure of 
Pu colloids remains elusive and hinders progress on the development of 
reliable processes of their management. Preparation of plutonium colloidal 
species with controlled composition and properties is still a challenge. 
Herein, we report the preparation of stable Pu(IV) colloids by the action of 
ultrasonic waves on PuO2 in salt-free water conditions. Sonochemical 
colloid was compared with hydrolytic colloid using HRTEM, Pu LIII-edge 
EXFAS and STXM/NEXAFS techniques. 

HRTEM revealed nanostructured morphology for both colloids composed 
of particles of PuO2 (fcc, space group) measuring about 7 nm and 3 nm, 
respectively. The EXAFS spectra of colloidal PuO2 nanoparticles were fitted 
on the basis of PuO2 cristal structure. Combined HRTEM and EXAFS results 
revealed the correlation between the coordination numbers (i.e. Pu-O and 
Pu-Pu) and atomic surface-to-volume ratio of studied PuO2 nanoparticles. 

The STXM/NEXAFS technics implemented at ALS BL 11-0-2 was used for the 
first time to study plutonium colloids. It offers a new topographic angle to 
describe colloids combined to spectroscopic measurements at oxygen K 
edge. It first revealed that the oxygen state of hydrolytic Pu colloid is 
influenced by hydrolyzed Pu(IV) species in much more extend than the 
sonochemical colloids. Moreover the topographic analysis highlight 
discrepancies in plutonium and oxygen distribution for hydrolytic Pu colloid 
on the contrary to sonolitic one. 

Complementarily to previous studies, this work confirmed that plutonium 
colloids (hydrolytic and sonochemical) can be described as core-shell 
nanoparticles composed of quasi stoichiometric PuO2 core and hydrolyzed 
Pu(IV) moieties at the surface shell. Nevertheless, the application of soft X-
ray technics highlight the strong influence of the synthetic route on colloid 
chemical composition and hence its expectable reactivity. 

1. A. B. KERSTING, Plutonium Transport in the Environment, Inorg. 
Chem.,52, 3533 (2013). 

2. A. I. ABDEL-FATTAH, D. ZHOU, H. BOUKHALFA, S. TERIMALA, S. D. WARE, 
A. A. KELLER, Dispersion Stability and Electrokinetic Properties of Intrinsic 
Plutonium Colloids: Implications for Subsurface Transport, Env. Sci. 
Technol., 47, 5626 (2013). 

3. C. WALTER, M. A. DENECKE, Actinide Colloids and Particles of 
Environmental Concern, Chem. Rev., 113, 995 (2013). 

9:20am AC+AS+SA-ThM5 In Pristinum Observation of Plutonium Hydride, 
Martin Brierley, J.P. Knowles, AWE 

The reaction of plutonium with hydrogen creates plutonium hydride in an 
energetic process which often liberates the reaction product as a powder. 
Plutonium hydride is pyrophoric; therefore study of the reaction product 
usually requires that it is passivated by careful exposure to oxygen prior to 
removal from the reaction chamber. The passivation process is highly 
energetic with the potential to significantly affect the microstructure of the 
reaction product and surrounding metal. In this study we used a scanning 
electron microscope with an adjoining reaction chamber to maintain 
vacuum between reaction and analysis to grow plutonium hydride and 
subsequently analyse the reaction products as formed. 

Initial work on electro refined Pu gave a slow reaction to hydrogen, 
requiring an in situ heat treatment to form hydride. Analysis of the reaction 
product was made in vacuo following reaction, preventing oxygen from 
accessing the sample. Subsequent cross sectional analysis of the reaction 
product morphology was performed, showing a coating of a hydride 
product layer with an open structure under the original surface oxide [1]. 

A sample of mixed α/δ phases was successively exposed to hydrogen for 
increasing durations of 60, 7200 and 70320 s. No evidence of reaction was 
evident following the 60 s and 7200 s exposures, unlike that observed in 
experiments on gadolinium [2] and uranium [3]. Following the 70320 s 
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exposure, 96 % of the available hydrogen was consumed and several large 
anisotropic reaction sites had formed. The hydride sites on this mixed 
phase sample exhibited anisotropic growth similar to δ-stabilised 
plutonium samples investigated previously [ 4 ]. Deformation of the δ-
phases surrounding hydride sites occurred via slip processes. Cracks 
formed in the overlying oxide layer above the deformed material allowing 
facile access for hydrogen to reach fresh Pu at the metal/oxide interface. 
Subsequent cross sectional analysis revealed anisotropic growth of hydride 
reaction sites, strongly supporting our previously proposed mechanism for 
anisotropic growth [4]. The α-phase domains resisted deformation and 
instead transferred the stresses from the hydride reaction front further 
into the surrounding metal. Post experimental cross sections through 
reaction sites suggest that hydride regions associated with α-domains had 
not undergone complete reaction. 

References 

1. M. Brierley et al., Journal of Nuclear Materials 469 (2016) 39-42 

2. G.M. Benamar, et al., Journal of Alloys and Compounds 520 (2012) 98– 
104. 

3. R.M. Harker, A.H. Chohollo, MRS Online Proceedings Library Archive, 
1444 (2012) 189 

4. M. Brierley, et al., Journal of Nuclear Materials 469 (2016) 145-152 

9:40am AC+AS+SA-ThM6 Evidence for f- and d-orbital Mixing in 
Lanthanide and Actinide Dialuminides, MAl2 (M = Ce, Sm, Eu, Yb, Lu, U, 
Pu), Stefan Minasian, Lawrence Berkeley National Laboratory (LBNL); A.B. 
Altman, J. Arnold, University of California at Berkeley; E.D. Bauer, Los 
Alamos National Laboratory; C.H. Booth, J.I. Pacold, C.D. Pemmaraju, D.G. 
Prendergast, D.K. Shuh, T. Tyliszczak, Lawrence Berkeley National 
Laboratory (LBNL) 

For most scientific and technical applications, aluminum is well-regarded as 
a trivalent, electropositive and Lewis-acidic metal. However, this textbook 
model fails to adequately explain the unusual chemical and physical 
properties of many f-element molecules, materials, and alloys 
incorporating aluminum and other group 13 elements. In order to develop 
a more nuanced model of aluminum electronic structure, we have turned 
to metal K-edge X-ray Absorption Spectroscopy (XAS), which is an 
established technique for evaluating electronic structure in bioinorganic 
and inorganic compounds. Pre-edge peaks in K-edge XAS correspond to 
bound state transitions between core and unoccupied orbitals. Therefore, 
by comparing pre-edge features to established references, information can 
be gathered on the electronic structure of a system and the orbitals 
involved in bonding. However, there is very little precedent for the 
measurement and interpretation of aluminum K-edge XAS for molecules 
and materials. 

This presentation will describe our recent efforts to develop Al K-edge XAS 
as a probe of chemical bonding and electronic structure in Al molecules 
and materials with lanthanide and actinide metals. Work began by 
examining a series of molecular aluminum compounds and by 
systematically varying supporting ligands and oxidation states. Features in 
the Al K-edge spectra were fully assigned through a comprehensive 
polarization study and comparison with the results of XCH and DFT 
calculations. Results were interpreted within a molecular orbital 
framework, providing unique insight that could not be obtained from 
analysis of NMR or metrics from single-crystal X-ray diffraction. These 
results have laid a foundation for ongoing efforts with lanthanide and 
actinide aluminum alloys, MAl2 (M = Ce, Sm, Eu, Yb, Lu, U, and Pu). 
Comparisons between the Al K-edge spectra and earlier resonant X-ray 
emission spectra for the MAl2 compounds provide unique insight into how 
electronic structure influences the desirable physical properties of these 
materials. For EuAl2 and YbAl2, the increasing occupancy of the 4f orbitals 
enhances screening of the 5d orbitals, resulting in enhanced Al 3p and Ln 
5d orbital mixing for Eu and Yb that is not observed for Ce, Sm, or Lu. For 
UAl2 and PuAl2, the Al K-edge XAS and theory results also provides 
convincing evidence of Al 3p and 6d orbital mixing. Because of the enhance 
radial extension of the 6d orbitals, 6d orbital involvement in bonding for 
PuAl2 is more likely to have an impact on the stability of the Pu–Al bonds. 
Current efforts are focused on evaluating f-element interactions with 
aluminum in other stoichiometric and non-stoichiometric alloys. 

11:00am AC+AS+SA-ThM10 Comparative Analysis of Uranium Oxide Films, 
Miguel Santiago Cordoba, Los Alamos National Laboratory 

Depleted Uranium (DU) Oxide thin films are considered to be employed as 
surrogates and reference compounds for systematic studies on the 
elucidation of fundamental properties of actinide materials. The goal of this 

work is to compare surface morphologies of DU oxide thin films fabricated 
by two techniques, polymer assisted deposition (PAD) and electron beam 
evaporation (EBE). In this contribution, we utilized a MultiMode atomic 
force microscope (AFM) operating in tapping mode in order to compare 
and establish a contrast among the three dimensional surface structures of 
polycrystalline U3O8 and UO2 films fabricated by PAD, and UO2 thin films 
deposited by EBE. Differences in surface morphology are analyzed, and the 
information provided by AFM is compared against other complementary 
techniques such as transmission electron microscopy (TEM) and scanning 
electron microscopy (SEM). Reported results revealed that films fabricated 
by both techniques had granular structure, with morphologies strongly 
depending on the fabrication methods and conditions. 

*Approved for public release LA-UR-16-22993 

11:20am AC+AS+SA-ThM11 Soft X-ray Spectroscopy of Actinide Materials, 
David Shuh, S.G. Minasian, C. Pemmaraju, A. Canning, D.G. Prendergast, 
Lawrence Berkeley National Laboratory; T. Tyliszczak, Lawrence Berkeley 
Lab, University of California, Berkeley; A. Modin, S. Butorin, J. Nordgren, L. 
Werme, P. Oppeneer, Uppsala University, Sweden 

Soft X-ray synchrotron radiation methodologies are being developed and 
employed at the Advanced Light Source (ALS) of Lawrence Berkeley 
National Laboratory to elucidate the electronic structure of actinide 
materials. Results from these investigations have begun to provide 
improved fundamental knowledge that can be used as a scientific basis for 
the enhanced design of special-purpose actinide materials and the overall 
understanding of actinide materials. The experimental developments at the 
ALS have centered on the use of the Molecular Environmental Science 
(MES) scanning transmission X-ray microscope (STXM) at Beamline 11.0.2 
for near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and 
on X-ray emission spectroscopy (XES) at several beamlines, focusing 
primarily on light atom constituents (C, N, O, F) for ligand K-edge XAS, and 
on metal-ion centers plus light-atom signals for XES. The 
spectromicroscopy capabilities of the STXM provide the means to 
investigate and determine the speciation in actinide materials and 
environmentally-relevant systems with spatial resolution that reaches to 
the true nanoscale. An absolutely critical and key enabling component for 
all of the soft X-ray investigations is the contribution of theory, that when 
combined with experiment, has firmly provided more detailed knowledge 
of electronic structure in actinide materials in terms of orbital composition 
and mixing, and oxidation state. 
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