AVS 63rd International Symposium & Exhibition
    Novel Trends in Synchrotron and FEL-Based Analysis Focus Topic Tuesday Sessions
       Session SA+AS+BI+MI-TuA

Invited Paper SA+AS+BI+MI-TuA1
Crystal Growth Mechanisms of Biominerals Revealed by Polarization-dependent Imaging Contrast (PIC) Mapping

Tuesday, November 8, 2016, 2:20 pm, Room 103C

Session: Synchrotron and XFEL Advances for Biological Systems (2:20-3:40 pm)/Synchrotron Radiation at the Frontiers of Device Technology (4:20-6:20 pm)
Presenter: Pupa Gilbert, University of Wisconsin - Madison
Correspondent: Click to Email

X-ray linear dichroism was first shown in natural biominerals by Metzler et al. [1]. Based on this effect, we developed Polarization-dependent Imaging Contrast (PIC)-mapping, which displayed non-quantitative crystal orientation at the nanoscale as gray levels in ratios of images acquired at different linear polarizations [2]. A later development provided grayscale, semi-quantitative PIC-maps by acquiring stacks of 19 images as the linear polarization was rotated in 5° intervals from 0° to 90° [3-7]. The latest development uses the same stacks of images to fully, quantitatively display crystal orientations in colors, including hue and brightness, which represent in-plane and off-plane crystallographic c-axis orientation angles [8-10].

Using PIC-mapping in these 3 subsequent modes, we discovered several biomineral formation mechanisms in nacre [11,7], sea urchin teeth [12-14], ascidian spicules [10], corals, eggshells, modern and fossil sea shell ultrastructure [15].

1. RA Metzler et al., Phys. Rev. Lett. 98, (2007). DOI: http://dx.doi.org/10.1103/PhysRevLett.98.268102

2. RA Metzler et al., Phys Rev B 77, 064110-1, (2008). DOI: http://dx.doi.org/10.1103/PhysRevB.77.064110

3. PUPA Gilbert et al., Proc Natl Acad Sci USA 108, (2011). DOI: 10.1073/pnas.1107917108

4. PUPA Gilbert, J Electr Spectrosc Rel Phenom, special issue on Photoelectron microscopy, Time-resolved pump-probe PES 185, (2012). DOI: http://dx.doi.org/10.1016/j.elspec.2012.06.001

5. IC Olson et al., J Am Chem Soc 134, (2012. JOURNAL COVER). DOI: dx.doi.org/10.1021/ja210808s

6. IC Olson et al., J Struct Biol 183, (2013). DOI: 10.1016/j.jsb.2013.06.006

7. IC Olson et al., J Struct Biol 184, (2013. JOURNAL COVER). DOI: 10.1016/j.jsb.2013.10.002

8. RT DeVol et al., J Phys Chem B 118, (2014). DOI: 10.1021/jp503700g

9. RT DeVol et al., J Am Chem Soc 137, (2015). DOI: 10.1021/jacs.5b07931

10. B Pokroy et al., Chem Mater 27, (2015. JOURNAL COVER.). DOI: 10.1021/acs.chemmater.5b01542

11. PUPA Gilbert et al., J Am Chem Soc 130, 17519, (2008). DOI: 10.1021/ja8065495

12. CE Killian et al., J Am Chem Soc 131, (2009). DOI: 10.1021/ja907063z

13. YR Ma et al., Procs Natl Acad Sci USA 106, (2009). DOI: 10.1073/pnas.0810300106

14. CE Killian et al., Adv Funct Mater 21, (2011). DOI: 10.1002/adfm.201001546

15. PUPA Gilbert et al., in preparation, (2016).