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8:20am  2D+EM+NS+PS+SP+SS+TF-MoM1  Growth and FTIR 
Characterization of 2D Hexagonal Boron Nitride on Metal Substrates, 
Boris Feigelson, V.M. Bermudez, J.K. Hite, Z.R. Robinson, V.D. Wheeler, 
K. Sridhara, S.C. Hernández, US Naval Research Laboratory 
Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one 
of the key materials in the development of new van der Waals 
heterostructures due to its outstanding properties including an atomically 
smooth surface, high thermal conductivity, high mechanical strength, 
chemical inertness and high electrical resistance. The development of 2D h-
BN growth is still in the early stages and largely depends on rapid and 
accurate characterization of the grown monolayer or few layers h-BN films. 

In this work, the IR-active out-of-plane vibrational mode of 2D h-BN films 
grown in vertical reactor by atmospheric-pressure CVD on metal substrates 
(mainly Cu but also Ni) is exploited to identify 2D h-BN directly on 
substrates and studied both computationally and experimentally.  

Fourier transform grazing-incidence infrared reflection absorption 
spectroscopy (FT-IRRAS) data have been used to characterize monolayer 
and few-layer h-BN films directly on metal substrates. Two sub-bands of 
the A2u(LO) vibrational mode were, for the first time, found for thin 2D h-
BN films in contact with Cu and Ni [1]. To unveil the nature of the 
discovered sub-bands, ab-initio calculations were performed and verified 
using 2D h-BN films grown on various Cu substrates with varying coverage 
and with individual crystallites of different shapes and size up to 4 mm. It 
was shown that the lower-energy A2u(LO)1 sub-band around 819 cm-1 is 
related to 2D h-BN coupled with Cu substrate, while the higher energy 
A2u(LO)2 sub-band around 824 cm-1 is related to decoupled (essentially free 
standing) 2D h-BN. These findings demonstrate not only a new and facile 
method for immediate 2D h-BN identification and characterization, but also 
a method that provides a simple means to characterize the degree of 
coupling between 2D h-BN and the substrate. This approach also provides 
an opportunity to determine which growth conditions lead to the absorption 
of foreign species on the substrate prior to the h-BN deposition and which 
conditions can prevent the formation of the interfacial layer between h-BN 
and the substrate. Such interfacial layers, like oxidized Cu, were shown to 
result in easily-recognizable shifts in the A2u(LO) peak. The degree to 
which the interaction of the h BN layer with the substrate is uniform and 
homogenous can also be assessed easily by examining the width and fine 
structure of the A2u(LO) band. The developed approach can also be used to 
study growth and formation of h-BN/graphene and other 2D 
heterostructures. 

References  

1. B. N. Feigelson, V. M. Bermudez, J. K. Hite, Z. R. Robinson, V. D. 
Wheeler, K. Sridhara, and S. C. Hernandez, Nanoscale 7, 3694 (2015) 

8:40am  2D+EM+NS+PS+SP+SS+TF-MoM2  Effect of Surface 
Termination on the Growth of Graphene on Cu Single Crystal 
Substrates, Tyler Mowll, E.W. Ong, University at Albany-SUNY, P. Tyagi, 
GLOBALFOUNDRIES, Z.R. Robinson, College at Brockport-SUNY, C.A. 
Ventrice, Jr., SUNY Polytechnic Institute 
The most common technique for synthesizing single-layer graphene films 
with large lateral dimensions is chemical vapor deposition (CVD) on Cu 
foil substrates. The primary reasons for choosing Cu substrates are the 
extremely low solubility of carbon in Cu, which allows a self-limited 
growth of graphene, and the relatively low cost of the Cu foil substrates. 
However, the transport properties of the CVD grown graphene films are 
typically a couple of orders of magnitude lower than for graphene flakes 
mechanically exfoliated from graphite. One of the reasons for the reduction 
in transport properties is the presence of crystalline defects in the CVD 
grown films. These structural defects arise in part from the multidomain 
structure of the Cu films. In order to achieve a better understanding of the 
influence of the surface termination of the Cu substrate on the 
crystallization of graphene during the CVD growth process, a systematic 
study of graphene growth on Cu(100), Cu(110), and Cu(111) crystals has 
been performed. The growth process is performed in an ultra-high vacuum 
(UHV) chamber that has been modified to perform CVD growth at 
pressures as high as 100 mTorr. The precursor gas used is ethylene. This 

growth procedure allows for the preparation of the clean surfaces in UHV, 
growth under typical CVD conditions, and characterization of the surface 
structure in UHV, without exposing the sample to atmospheric 
contaminants. Our results indicate that the Cu(111) surface has the lowest 
catalytic activity of the three surfaces for the decomposition of ethylene. In 
fact, the decomposition rate is so low that graphene growth is suppressed 
because of the sublimation of Cu at the elevated temperatures used to grow 
the graphene. By using an Ar overpressure, it was found that graphene 
could be grown on that surface. The surface symmetry of the Cu substrate 
has a strong influence on the rotational alignment of the graphene grains as 
they nucleate on each surface. For Cu(111), single-domain graphene growth 
can be achieved for ethylene pressures of 5 mTorr or less. For both Cu(100) 
and Cu(110), a minimum of two graphene domains is always observed. 

9:00am  2D+EM+NS+PS+SP+SS+TF-MoM3  Thermally Annealed and 
Electropolished Cu Substrates for CVD Growth of 2D Materials: 
Graphene, h-BN and MoS2, Karthik Sridhara, Texas A&M University, 
B.N. Feigelson, J.K. Hite, US Naval Research Laboratory, A. Nath, George 
Mason University, M. Fuhrer, Monash University, Australia, D.K. Gaskill, 
US Naval Research Laboratory, H. Castaneda, L.O. Nyakiti, Texas A&M 
University 
The growth of two dimensional (2D) materials such as graphene, hexagonal 
boron nitride (h-BN) and molybdenum disulphide (MoS2) have been 
demonstrated by chemical vapor deposition (CVD) on polycrystalline 
catalytic copper substrates. These Cu foil substrates (25 µm thick) are 
produced by metallurgical rolling leading to the formation of irregular 
ridges on the foil surface along with a film of native oxide on the surface. 
These processing artifacts are a limiting factor for controlled and 
reproducible large area (several cm2) growth of 2D materials. Greater 
control of growth can be achieved by controlling the density of nucleation 
sites and improving the catalytic activity of Cu by removing the Cu native 
oxide on the surface. Previous attempts to pre-treat the Cu substrate by 
using wet chemistry or thermal annealing to control growth has been 
weakly addressed. 

In this work, electropolishing combined with prior thermal annealing at 
1030°C for 5 hrs under H2 is used to control the degree of roughness of cold 
rolled polycrystalline Cu foils, and subsequently, to explore the influence of 
electropolishing on the growth of 2D materials: graphene, h-BN and MoS2. 
Electropolishing dissolves a thin surface layer of Cu, which contains surface 
defects and contaminants. This helps in decreasing the density of 
spontaneous nucleation sites by producing a morphologically uniform and 
contaminant-free surface. Secondary effects, etch pits which are ascribed to 
O2 bubbling at random nucleation sites on Cu surface, are mitigated by 
using additives, such as acetic acid and ethylene glycol, in the H3PO4 
electrolyte. Thermal annealing and electropolishing results in this work 
reveal that a roughness of ~1.2 nm (Rq) can be achieved as measured by 
Atomic Force Microscope (AFM) along with a greatly planarized Cu foil. 
AFM will also be used to establish the Cu substrate morphology and its 
relationship to the growth of 2D materials. Fourier Transform Infrared, and 
Raman spectroscopy will be used to confirm the existence of the 2D 
material. Preliminary growth studies of h-BN on these high quality Cu 
substrates demonstrate improved growth, as assessed by the metrics of size 
and count of h-BN crystals from Scanning Electron Microscopy (SEM) 
micrographs [1]. This work will demonstrate that thermal annealing 
followed by electropolishing leads to optimization of Cu foil surface 
resulting in the larger crystal size and a reduction in nucleation sites that 
induce 2D material crystal growth [1]. 

[1] K. Sridhara. “Growth of hexagonal boron nitride on electrochemically 
prepared polycrystalline Cu substrates.” M.S. Thesis, University of 
Maryland, College Park, MD, 2014. 

9:20am  2D+EM+NS+PS+SP+SS+TF-MoM4  In Situ Optical 
Diagnostics During Molybdenum Disulfide Chemical Vapor Deposition, 
Berc Kalanyan, J.E. Maslar, W.A. Kimes, B.A. Sperling, National Institute 
of Standards and Technology (NIST), R. Tieckelmann, T. Orzali, 
SEMATECH, R. Beams, S.J. Stranick, A.V. Davydov, National Institute of 
Standards and Technology (NIST) 
Two dimensional (2D), layered transition-metal dichalcogenides (TMDs), 
e.g., MoS2, are of increasing interest for next-generation nanoelectronic and 
optoelectronic devices. These materials have thickness dependent optical 
and electrical properties that make them suitable for a variety of 
applications including integrated circuits. For many applications, high 
volume manufacturing (HVM) of devices based on TMDs will require 
deposition techniques that are capable of reproducibly growing wafer-scale, 
2D TMD films with monolayer control. To date, such a capability has not 
been widely demonstrated with typical TMD deposition processes. 
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This work aims to identify promising chemistries for HVM TMD chemical 
vapor deposition (CVD) processes. We focus on MoS2 CVD using a variety 
of precursors (including organometallics, elemental sulfur, and organosulfur 
compounds) in a research grade single-wafer deposition system equipped 
with in situ optical diagnostics. The precursor flux is measured using optical 
mass flow meters installed on the delivery lines while deposition chemistry 
is characterized in the reactor volume above the deposition surface using in 
situ Fourier transform infrared (FR-IR) spectroscopy. As-deposited and 
annealed films are characterized with ex situ techniques, including Raman 
and photoluminescence spectroscopy, scanning and transmission electron 
microscopy, and X-ray photoelectron spectroscopy. 

Stoichiometric MoS2 films have been prepared from (η5-
ethylcyclopentadienyl)-dicarbonylnitrosyl molybdenum and elemental 
sulfur. As-grown films are smooth and continuous with major MoS2 Raman 
modes present. Film thickness scales approximately with Mo precursor 
exposure time and few-layer films can be produced using pulsed injection 
mode. Furthermore, optical in situ diagnostics allow us to relate metal 
precursor flux to film crystallinity and facilitate the study of precursor 
decomposition in the thermal boundary layer. 

9:40am  2D+EM+NS+PS+SP+SS+TF-MoM5  Controlled Interfaces in 
2D Materials, Arend van der Zande, University of Illinois at Urbana 
Champaign INVITED 
Interfaces are ubiquitous in material science and technologies. For example, 
grain boundaries often dominate the mechanical and electrical properties in 
crystalline materials, while interfaces between dissimilar materials form the 
fundamental building blocks to diverse technologies, such as building 
electrical contacts in transistors and PN diodes in solar cells. Interfaces 
become even more important in 2D materials such as graphene and 
transition metal dichalcogenides, where the lack of dangling bonds enables 
material stability down to a single monolayer. In this entirely surface-
dominated limit, the usual rules governing 3D interface devices, such as 
depletion regions, break down. 

In this talk, we will discuss our work on engineering in- and out-of-plane 
2D materials interfaces. We will first examine the structure of atomically-
thin membranes and the impact of defects such as grain boundaries on the 
mechanical, optical, and electronic properties. We fabricate out-of-plane 
interfaces by stacking 2D materials to form heterostructures, which we 
utilize to tailor the bandgap in 2D materials and build new optoelectronic 
devices such as tunable photodiodes. Looking to the future, the rapidly 
expanding family of 2D materials with a diverse set of electronic properties 
provide a promising palette for discovering emergent phenomena and a 
motivation for developing overarching design principles for understanding 
and controlling interfaces in 2D.  

10:40am  2D+EM+NS+PS+SP+SS+TF-MoM8  Obtaining Clean 
Suspended CVD Graphene: Comparative Examination of Few 
Transfer and Cleaning Protocols, Alexander Yulaev, National Institute of 
Standards and Technology (NIST), University of Maryland (UMD), G. 
Cheng, A. Hight Walker, National Institute of Standards and Technology 
(NIST), M. Leite, University of Maryland (UMD), A. Kolmakov, NIST 
Clean suspended graphene is used as supporting media in TEM, filtering 
membranes, and as electron transparent windows in ambient pressure 
electron spectroscopy and microscopy. CVD grown graphene is the most 
popular material for these applications due to its large-scale and high yield 
production. Multiple approaches such as sacrificial layer based methods [1] 
and direct transfer method on perforated carbon mesh by IPA droplet [2] 
have been implemented to transport graphene from copper or nickel foil 
onto a target substrate. However, the cleanness of the suspended graphene 
remains to be an issue, and controversial results on lateral size of atomically 
clean graphene domains have been reported [2-5]. We conduct the 
comparative analysis of the most widely-used CVD graphene transfer and 
cleaning protocols. In particular, using extreme surface sensitivity of low 
energy SEM, we compare the standard PMMA based approach with direct 
graphene transfer method. We also propose alternative graphene transfer 
protocol which is based on employment of polycyclic aromatic hydrocarbon 
(PAH) as a sacrificial layer. The advantage of PAH method over others 
consists in facile sublimation of sacrificial layer upon heating PAH material 
within moderate temperature range of 100-150 oC. All three methods of 
graphene transfer were compared under the same conditions followed by 
similar graphene cleaning procedures by platinum catalysis [4] and 
activated carbon adsorption [5]. Both SEM and TEM study revealed the 
superiority of PAH method to achieve cleaner suspended CVD graphene. 
We envision that novel approach of graphene transfer can be employed 
under conditions when exposure of the sample to moisture is prohibited 
such as in battery research.  

 

[1] “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary 
Substrates”, Ji Won Suk et al., ACS Nano, 2011, 5 (9), pp. 6916. 

 

[2] “A direct transfer of layer-area graphene”, William Regan et al., Appl. 
Phys. Lett., 2010, 96, 113102. 

 

[3] “Low-energy electron holographic imaging of gold nanorods supported 
by ultraclean graphene”, Jean-Nicolas Longchamp et al., Ultramicroscopy 
145 (2014) 80. 

 

[4] “Ultraclean freestanding graphene by platinum-metal catalysis”, Jean-
Nicolas Longchamp et al., J. Vac. Sci. Technol. B 31, 020605 (2013). 

 

[5] “Dry-cleaning of graphene”, Gerardo Algara-Siller et al., Applied 
Physics Letters 104, 153115 (2014). 

11:00am  2D+EM+NS+PS+SP+SS+TF-MoM9  Low-Energy Electron 
Microscopy of Transition Metal Dichalcogenides Prepared by Various 
Methods, Sergio de la Barrera, S. Satpathy, R. Feenstra, Carnegie Mellon 
University, S. Wu, X.D. Xu, University of Washington, S. Vishwanath, X. 
Liu, J. Furdyna, D. Jena, H. Xing, University of Notre Dame, Y.-C. Lin, 
S.M. Eichfeld, J.A. Robinson, Pennsylvania State University, P. Mende, 
Carnegie Mellon University 
Recent work on two-dimensional materials has focused on transition metal 
dichalcogenides (TMDs), owing to their semiconducting behavior. 
Characterizing as-grown TMDs is crucial in improving the understanding of 
the effects of growth conditions, and ultimately improving material quality. 
Low-energy electron microscopy (LEEM) is a powerful tool for this 
purpose, providing real-space images with ~10 nm spatial resolution as well 
as selected-area low-energy electron diffraction (µLEED) of local crystal 
orientation at length scales down to ~ 1 µm. Additionally, by varying the 
incident electron beam energy, low-energy electron reflectivity (LEER) 
spectra are extracted. 

In this work, comparative LEEM results are presented from three TMD 
materials: MoS2 prepared by exfoliation (onto Si), MoSe2 grown by 
molecular beam epitaxy (MBE) (on epitaxial graphene), and WSe2 grown 
by chemical vapor deposition (CVD) (also on epitaxial graphene). It is 
found that for TMDs generally, the LEER spectra do not exhibit the 
oscillatory behavior (in the 0 – 6 eV range) that is seen for both graphene 
and hexagonal boron nitride (h-BN) for various numbers of monolayers 
(MLs). This lack of oscillatory behavior is interpreted as being due to the 
weak coupling of the interlayer states localized in between the MLs, which 
is itself a result of the relatively large out-of-plane lattice parameter. 
Nevertheless, additional “band structure” features in the LEER spectra 
permit clear identification of the TMD materials relative to the substrates. 
The exfoliated flakes are seen to extend over many 10’s of mm, the MBE-
grown MoSe2 forms a nearly continuous film, and the CVD-grown WSe2 
forms triangular islands several mm in extent. µLEED studies of the MBE-
grown MoSe2 and CVD-grown WSe2 reveal preferential orientation with the 
underlying graphene substrates.  

The reduced work functions of the TMD materials relative to the underlying 
substrate are clearly evident in the onset voltages for the LEER spectra (i.e. 
the onset shifts in accordance with the local work function of the surface). 
Most significantly, for the WSe2 islands, a predominant “tail” is observed in 
this onset, extending about 5V below the usual onset location. This tail is 
tentatively interpreted as arising from charging of the islands, perhaps due 
to polar termination at the edges of the TMD islands. Comparison of the 
data with simulated LEER spectra will be presented, as a test of this model 
for edge charge of the islands. 

Work supported by the Center for Low Energy Systems Technology 
(LEAST), one of six SRC STARnet Centers sponsored by MARCO and 
DARPA, and by NSF-EFRI-1433496. 

11:20am  2D+EM+NS+PS+SP+SS+TF-MoM10  Atomically-Thin 2D 
Layers of Group IV Semiconductors, Joshua Goldberger, The Ohio State 
University INVITED 
Similar to how carbon networks can be sculpted into low-dimensional 
allotropes such as fullerenes, nanotubes, and graphene with fundamentally 
different properties, it is possible to create similar “allotropes” of Ge or Sn 
with unique optoelectronic properties as well. Here, we will describe our 
recent success in the creation of hydrogen and organic-terminated group 14 
graphane analogues, from the topochemical deintercalation of precursor 
Zintl phases, such as CaGe2. We will discuss how the optical, electronic, 
and thermal properties of these materials can be systematically controlled 
by substituting either the surface ligand or via alloying with other Group 14 
elements. Additionally, we have also developed an epitopotaxial approach 
for integrating precise thicknesses of Germanane layers onto Ge wafers that 
combines the epitaxial deposition of CaGe2 precursor phases with the 
topotactic interconversion into the 2D material. Finally, we will describe 
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our recent efforts on the synthesis and crystal structures of Sn-containing 
graphane alloys in order to access novel topological phenomena predicted 
to occur in these graphanes. 
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Nanometer-scale Science and Technology 
Room: 212B - Session NS+AS+SP-MoA 

Optical Spectroscopy at the Nanoscale 
Moderator: Craig Prater, Anasys Instruments 

2:20pm  NS+AS+SP-MoA1  Nanoscale Infrared Spectroscopy 
Characterization of Amyloid Aggregates Structure, Francesco Simone 
Ruggeri, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 
T. Muller, University of Cambridge, UK, D. Galante, CNR, Italy, T.P.J. 
Knowles, University of Cambridge, UK, H. Lashuel, Ecole Polytechnique 
Fédérale de Lausanne (EPFL), Switzerland, C. D'Arrigo, CNR, Italy, G. 
Dietler, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 
 INVITED 
Aging of world population has increased the onset of several 
neurodegenerative disorders (ND). These diseases are connected with 
insoluble fibrillar proteins aggregates, termed Amyloid. During their 
aggregation, starting monomeric proteins undergo internal structural 
rearrangement bringing to fibrils with a final universal cross β-sheet 
quaternary structure. This structure is independent by the monomeric initial 
one and it is the fingerprint of amyloid and related diseases. Previously, the 
final fibrillar cross-β sheet structures were considered the cause of the 
illnesses. Nowadays, there is strong evidence that the intermediate 
oligomeric stages of fibrillation could be the cytotoxic one and most of the 
research groups are investigating the early stages of fibrillation and the 
inter-conversion of monomers into fibrils. Infrared spectroscopy is a key 
method for studying conformational properties of proteins and their 
structural conversion during amyloid fibrillation. Unfortunately, this and 
others bulk techniques are just able to give average information of the 
heterogeneous aggregating amyloid solution. To study the chemical 
structure of amyloid species at the nanoscale, we utilized a 
thermomechanical detection technique based on atomic force microscopy 
(nanoIR). If an IR pulse is absorbed by a sample, the local temperature rises 
and leads to a local thermal expansion. This deformation excites mechanical 
resonances of the AFM cantilever, in contact with the sample, allowing 
simultaneously acquiring topography, nanoscale chemical IR maps and/or 
spectra. We focused on the study of different amyloidogenic proteins, as α-
synuclein, lysozyme and αβ42. We measured chemical spectra and IR maps 
of monomeric and fibrillar aggregates. For the first time, we distinguished 
chemically different amyloid structures at the single aggregate nanometer 
scale. Nanoscale chemical characterization of amyloidogenic structures as 
oligomers, protofibrils and fibrils is central to understand how proteins 
misfold and aggregate, to unravel the structural rearrangement of monomers 
inside amyloid fibrils and to target pharmacological approach to ND. 

3:00pm  NS+AS+SP-MoA3  Recent Progress in Tip-Enhanced Mid-
Infrared Photoexpansion Nanospectroscopy, M. Jin, F. Lu, Mikhail 
Belkin, The University of Texas at Austin INVITED 
Mid-infrared absorption spectroscopy in the molecular fingerprint region 
(1/λ~600-4000 cm-1) is widely used for chemical identification and 
quantitative analysis. The ability to perform mid-infrared spectroscopy with 
nanometer spatial resolution is highly desired for applications in chemical, 
materials, and life sciences. Nanoscale mid-infrared spectra can be obtained 
by detecting mechanical forces exerted by sample on an atomic force 
microscope (AFM) tip upon sample light absorption and photoexpansion. 
The first demonstration that photoexpansion of bulk polymers can be 
detected by AFM and used for mid-infrared nanospectroscopy was by 
Alexander Dazzi and co-workers [1]. However, only relatively thick 
polymer samples (approximately 50-nm-thick or thicker) produced 
detectable cantilever deflections in these experiments, even when mid-
infrared optical intensity was close to sample damage. We demonstrated 
that the sensitivity of mid-infrared photoexpansion nanospectroscopy, also 
known as AFM-IR, may be improved by several orders of magnitude if we 
send low-power laser pulses at a repetition frequency that is tuned in 
resonance with the mechanical vibrational frequency of an AFM cantilever 
and if we further employ tip-enhancement of the optical field below a sharp 
gold-coated AFM tip. As a result, monolayer sensitivity and 25 nanometer 
spatial resolution was achieved for molecular imaging in air [2]. We will 
discuss details of these experiments and recent progress of this technique, 
including development of background suppression methods that may lead to 
further enhancement in sensitivity and progress towards achieving 
photoexpansion nanospectroscopy of samples in aqueous environment that 
requires mitigation of liquid damping of cantilever vibration and strong 
infrared absorption.  

[1] A. Dazzi, R. Prazeres, F. Glotin and J.M. Ortega, Opt. Lett. 30, 2388 
(2005). 

[2] F. Lu, M. Jin and M.A. Belkin, Nature Photonics 8, 307 (2014). 

3:40pm  NS+AS+SP-MoA5  Nano-photonic Phenomena in van der 
Waals Heterostructures, Dmitri Basov, University of California San 
Diego INVITED 
Layered van der Waals (vdW) crystals consist of individual atomic planes 
weakly coupled by vdW interaction, similar to graphene monolayers in bulk 
graphite. These materials can harbor superconductivity and ferromagnetism 
with high transition temperatures, emit light and exhibit topologically 
protected surface states. An ambitious practical goal is to exploit atomic 
planes of vdW crystals as building blocks of more complex artificially 
stacked heterostructures where each such block will deliver layer-specific 
attributes for the purpose of their combined functionality. We investigated 
van der Waals heterostructures assembled from atomically thin layers of 
graphene and hexagonal boron nitride (Hbn). We observed a rich variety of 
optical effects due to surface plasmons in graphene and hyperbolic phonon 
polaritons in Hbn. We launched, detected and imaged plasmonic, phonon 
polaritonic and hybrid plasmon-phonon polariton waves in a setting of an 
antenna based nano-infrared apparatus. Peculiar properties of hyperbolic 
phonon polaritons in Hbn enabled sub-diffractional focusing in infrared 
frequencies. Because electronic, plasmonic and phonon polaritonic 
properties in van der Waals heterstructures are intertwined, gate voltage 
and/or details of layer assembly enable efficient control of nano-photonic 
effects. I will also discuss an ability to manipulate plasmonic response of in 
these structures at femto second time scales that we have demonstrated 
using a novel technique of pump-probe nano-infrared spectroscopy.  

4:20pm  NS+AS+SP-MoA7  Ultrahigh Vacuum Tip-Enhanced Raman 
Spectroscopy and Fluorescence of a Self-Assembled Porphyrin 
Monolayer, Naihao Chiang*, N. Jiang, Northwestern University, D. 
Chulhai, Pennsylvania State University, E. Pozzi, M.C. Hersam, 
Northwestern University, L. Jensen, Pennsylvania State University, T. 
Seideman, R.P. Van Duyne, Northwestern University 
The study of ultrahigh vacuum tip-enhanced Raman and fluorescence 
spectroscopy (UHV-TERS/TEF) has been raised to an unprecedented level. 
UHV-TER and TEF spectra for a self-assembled meso-tetrakis-(3,5-di-
tertiarybutylphenyl)-porphyrin (H2TBPP) on Ag(111) have been observed 
with five different laser excitations in the Q-band region. The observed 
TERS spectra are complemented by the time-dependent density functional 
theory (TDDFT) simulations. Chemical information of different vibronic 
excited states is revealed. The observed TEF spectra suggest a weak 
coupling of H2TBPP to the surface due to the t-butyl groups. Therefore, the 
strong tip-enhancement is sufficient to overcome the quenching effect of the 
metal substrate. This study demonstrates the potential of combining TERS 
and TEF for studying surface-mounted porphyrins, thus setting the stage for 
future investigation into porphyrin-based photovoltaics and photocatalysis. 

4:40pm  NS+AS+SP-MoA8  Nano-Optical Spectroscopic Imaging of 
Monolayer MoS2, Wei Bao*, UC Berkeley, N. Borys, Lawrence Berkeley 
National Lab, C. Ko, J. Suh, W. Fan, UC Berkeley, A. Thron, Lawrence 
Berkeley National Lab, Y. Zhang, A. Buyanin, UC Berkeley, J. Zhang, S. 
Cabrini, P. Ashby, A. Weber-Bargioni, Lawrence Berkeley National Lab, S. 
Tongay, Arizona State University, S. Aloni, D. Ogletree, Lawrence 
Berkeley National Lab, J. Wu, UC Berkeley, M.B. Salmeron, Lawrence 
Berkeley Lab, UC Berkeley, P. Schuck, Lawrence Berkeley National Lab 
With their remarkable electrical and optical properties, two dimensional 
(2D) monolayer transition metal dichalcogenide (ML-TMDC) 
semiconductors are ideal building blocks for atomically thin, flexible 
optoelectronic devices. Yet their performance falls far below theoretical 
expectations, particularly for critical factors such as carrier mobility and 
quantum yield. Overcoming these problems requires a fundamental 
understanding of the optoelectronic properties of these materials at the 
nanoscale, which is best obtained with optical microscopy and spectroscopy 
tools with spatial resolution below the diffraction limit. Here, we use the 
recently-developed “Campanile” nano-optical probe1 to spectroscopically 
image for the first time key optoelectronic properties in ML-MoS2 with 
deeply sub-wavelength resolution – i.e., at a resolution commensurate with 
characteristic distances such as the exciton diffusion length. We find that 
synthetic ML-MoS2 is composed of two distinct optoelectronic regions: a 
locally-ordered but mesoscopically heterogeneous interior, where 
photoluminescence (PL) intensity correlates with the local ratio of the 
exciton and trion populations, and an unexpected edge region ~300 nm wide 
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of energetically disordered states. In addition, we directly visualize the 
spatially-varying optical properties of inter- and intra- flake grain 
boundaries and quantify the characteristic length over which they quench 
excitons. Complimentary Nano-Auger elemental analysis reveals that the 
optically “defective” grain boundary and edge regions are sulfur-deficient. 
The nanoscale structure-property relationships established here have broad 
implications for the development of atomically thin transistors, quantum 
optical components, photodetectors and light-emitting devices based on 
high-quality ML-TMDCs. 

1 Bao, W. Mapping local charge recombination heterogeneity by 
multidimensional nanospectroscopic imaging. , 1317-1321 (2012). 

5:00pm  NS+AS+SP-MoA9  Hybrid Peak-force Tapping/near-field s-
SNOM Microscope for Nano-chemical and Nano-mechanical Imaging 
of Proteins and Other Nanoscale Systems, Martin Wagner, Bruker Nano 
Surfaces, K. Carneiro, S. Habelitz, University of California, T. Mueller, 
Bruker Nano Surfaces 
Infrared spectroscopy can give valuable information on chemical 
composition, but far-field techniques such as FTIR spectroscopy are limited 
in spatial resolution. S-SNOM is a well-established near-field technique [1] 
that can overcome this diffraction limit, allowing an improvement in spatial 
resolution down to 10 nm. 

Our s-SNOM instrument is based on an atomic force microscope whose tip 
is illuminated with a quantum cascade laser. Field-resolved detection of the 
scattered light measures absorption [2]. We have combined the instrument 
with peak-force tapping, a technique that allows Pn-level force control 
between tip and sample. Besides being able to image fragile material 
systems, one can extract valuable nano-mechanical information such as 
adhesion or modulus with molecular resolution [3]. 

Here, amongst other brief examples, we study an amelogenin sample. 
Amelogenin is a protein that is critical to dental enamel formation [4,5]. In 
the presence of calcium and phosphate ions it self-assembles into ordered, 
self-aligned nanoribbon bundles. Since the ordering is similar to the one 
observed in phosphate-based apatite crystals that comprise dental enamel, it 
is likely that the bundles form a template for these crystals. To help clarify 
that open question, we map the distributions of phosphate and 
hydroxyapatite nanocrystals within the bundles consisting of <30 nm 
narrow nanoribbons that have only a height of a few nm down to 1nm.  

We present correlated topography, near-field and nano-mechanical data. 
While the presence of phosphate could be identified using s-SNOM 
absorption maps, no apatite nanocrystals with higher modulus than the 
ribbons were observed in peak-force tapping. This indicates that for these in 
vitro preparation conditions apatite crystals have not formed yet, but also 
highlights the high chemical sensitivity of the instrument. 

In summary, using a novel combination of near-field imaging and peak-
force tapping we study the phosphate distribution and crystallization in 
protein samples. Our findings help to understand the formation processes of 
dental enamel and the role of amelogenin protein.  

[1] F. Keilmann, Hillenbrand R., Phil. Trans. R. Soc. Lond. A 362, 787 
(2004) 

[2] X. Xu, A. Tanur, G. Walker, J. Phys. Chem. A 117, 3348 (2013) 

[3] F. Rico, C. Su, S. Scheuring, Nano Lett. 11, 3983 (2011) 

[4] O. Martinez-Avila et al., Biomacromolecules 13, 3494 (2012) 

[5] B. Sanii et al., J Dent Res 93 (9), 918 (2014) 
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Nanometer-scale Science and Technology 
Room: 212B - Session NS+SP-TuM 

Nanoscale Imaging and Materials Characterization 
Moderator: Mehmet Z. Baykara, Bilkent University 

8:00am  NS+SP-TuM1  Influence of Focused Electron Beam on 
Electrical Characterization of Advanced MOSFETs, Jonghyuk Kang, 
S.H. Lee, Samsung Electronics Co., LTD., South Korea, B.D. Choi, 
Sungkyunkwan University, Republic of Korea 
The focused electron beam based inspection instruments such as Scanning 
Electron Microscope (SEM) have become widespread in the semiconductor 
manufacturing and failure analysis of scaled devices. Also, nano-probing 
systems with SEM guidance have become important in the failure analysis 
area to evaluate the localized device in the actual LSI [1] . However, 
electron beam leads to device degradation [2] and its damage are increasing 
with the scaling. As CMOS scaling is going to be sub-10nm regime [3], 
electron beam damages are becoming critical issue in performing electrical 
characterization at the contact level in integrated devices using nano-probe 
technique. To avoid the electron damage, the acceleration voltage should be 
lower. However, the lower acceleration voltage of electron beam leads to 
lower resolution of image created by SEM guidance. 

In this work, we evaluated NMOS FinFET in SRAM cells manufactured in 
a 10nm CMOS process with Atomic Force Microscopy (AFM) based nano-
probing system. AFM based nano-probing system has no electron beam 
damage because it uses topography image created by AFM instead of SEM 
for guidance at contact level [4] . After deprocessing the samples to the 
contact level, we irradiated electron beams to samples to investigate a 
dependency of the device characteristics on electron beam acceleration 
voltage. Compared to a non-exposed reference transistor, the exposure of 
electron beam on the target transistor lead to significant changes on device 
characteristics such as saturation current (IDS), sub-threshold voltage (VTH) 
and sub-threshold swing (S). This might be due to trapped charges in the 
gate oxide and interface state [5] . Our studies show that it is critical to 
avoid electron beam exposure before electrical device characterizations are 
carried out at the contact level using nano-probe system since electron beam 
induced device parameter changes are not negligible in the failure analysis 
of sub-10nm devices. 
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[1] S. Ikeda, Y. Yoshida, K. Ishibashi, Y. Mitsui, Electron Devices, IEEE 
Transactions on, 50 (2003) 1270-1276. 
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[4] R. Mulder, S. Subramanian, T. Chrastecky, INTERNATIONAL 
SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS, ASM 
International; 2006, pp. 503. 

[5] S. Shabde, A. Bhattacharyya, R.S. Kao, R.S. Muller, Solid-state 
electronics, 31 (1988) 1603-1610. 

8:20am  NS+SP-TuM2  In Situ Synthesis and Characterization of Core-
Shell Nanoparticle Arrays Using Dynamic Transmission Electron 
Microscopy, Joseph McKeown, Lawrence Livermore National Laboratory, 
Y. Wu, University of Tennessee, J.D. Fowlkes, Oak Ridge National 
Laboratory, P.D. Rack, University of Tennessee, G.H. Campbell, Lawrence 
Livermore National Laboratory 
Core-shell nanoparticles have attracted much attention due to their unique 
and tunable properties relative to bulk structures of the same materials, 
making them candidates for a variety of energy- and catalysis-related 
applications. Intriguing magnetic behavior can be tailored by variation of 
size, interface, crystal orientation, and composition, and core-shell 
nanoparticles with noble-metal shells yield novel optical responses and 
enhanced electrocatalytic activity. The immiscible Co-Cu alloy system is of 
particular interest, because it combines a strong magnet (Co) with an 
effective conductor (Cu) that also has a tunable plasmonic resonance. The 
ability to monitor and characterize these dewetting processes in situwhile 
the system is evolving can potentially lead to increased control and directed 
self-assembly. However, in situcharacterization of the dynamics of self-
assembly processes has proven extremely challenging, particularly in 
materials systems that utilize metallic nanoparticles as the dynamics of 

these processes evolve extremely fast over very small spatial scales. Here, 
we present a method to synthesize Co@Cu nanoparticles via pulsed-laser-
induced dewetting of Co-Cu alloy thin films. We show that this technique 
effectively synthesizes Co@Cu core-shell particles with controllable sizes 
ranging from tens to several hundred nanometers. The assembly dynamics 
during pulsed-laser-induced dewetting of Co-Cu alloy films were revealed 
using the high spatiotemporal resolution of the dynamic transmission 
electron microscope (DTEM) at Lawrence Livermore National Laboratory.  

Work at Lawrence Livermore National Laboratory was performed under the 
auspices of the U.S. Department of Energy, Office of Science, Office of 
Basic Energy Sciences, Division of Materials Sciences and Engineering for 
FWP SCW0974 under Contract DE-AC52-07NA27344. Work at the 
University of Tennessee was supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, Division of Materials 
Sciences and Engineering. Research conducted at the Center for Nanophase 
Materials Sciences is sponsored at Oak Ridge National Laboratory by the 
Scientific User Facilities Division of the U.S. Department of Energy, Office 
of Science, Office of Basic Energy Science. 

8:40am  NS+SP-TuM3  Investigation of Nickel-assisted Growth of 
Silicon Carbide Nanowires, Lunet E. Luna, R. Maboudian, C. Carraro, 
University of California at Berkeley 
Silicon carbide (SiC) based electronics hold promise for pushing past the 
limits of current technology to achieve small, durable devices that can 
function in high-temperature, high-voltage, corrosive, and biological 
environments. SiC is an ideal material for such conditions due to its high 
mechanical strength, excellent chemical stability, and its biocompatibility. 
Consequently, SiC nanowires have attracted interest in applications such as 
biological sensors, field emission cathodes, and energy storage devices. To 
realize SiC nanowire based devices for large-scale use, the growth 
mechanism must be further understood to enable strict control of nanowire 
crystal structure and orientation. Here we report on recent studies to 
understand the growth mechanism of Ni-assisted silicon carbide nanowires 
using single-source precursor methyltrichlorosilane. The effects of growth 
parameters, such as temperature and precursor flow rate, on the structure 
and morphology of the resulting nanowires will be presented. This study 
identifies the key parameters that may be varied to tailor nanowire growth 
for various applications. 

9:00am  NS+SP-TuM4  Homogeneous Nucleation and Characterization 
of Nanodiamonds Synthesized in an Atmospheric-Pressure 
Microplasma, Jonathan Cole, R.M. Sankaran, Case Western Reserve 
University 
Nanodiamonds possess striking properties such as exceptional mechanical 
and chemical stability, low cytotoxicity, tunable active surface chemistry, 
and tunable photoluminescence-inducing color centers, but their synthesis 
remains a challenge. At normal temperature and pressure, graphite is the 
thermodynamically stable phase of bulk carbon, while the diamond phase 
requires high temperatures and pressures. Nanodiamonds have thus been 
produced via high-pressure, high-temperature (HPHT) conversion of 
graphite in the presence of carbonaceous precursors and via detonation of 
carbon-containing explosives. Alternatively, nanocrystalline diamond films 
have been deposited at low pressure (~1 Torr) by chemical vapor deposition 
(CVD). Supporting theoretical predictions1 have shown that at the 
nanoscale, hydrogenated forms of carbon prefer sp3 bonding, even at normal 
conditions, up to a certain size. 

Here, we present a study of a plasma process for the synthesis of 
nanodiamonds at low temperature (<1000 oC) and atmospheric pressure. C-
H-O-containing vapor precursors diluted in Argon are continuously fed into 
a DC hollow cathode plasma discharge. Nanoparticles nucleate from radical 
moieties such as C2 and CH, whose radiative transitions (specifically, C2 
516 nm vibrational band and CH 431 nm electronic band) are monitored by 
optical emission spectroscopy (OES). Particles are carried as an aerosol to 
either a filter for ex situ materials analysis or an in situ scanning mobility 
particle sizer system (SMPS). SMPS measurements confirm particle 
formation and allow us to correlate particle yield and size distribution with 
OES results. Specifically, we have compared results for ethanol and 
methanol precursors and find that C2 formation is favored by ethanol, while 
CH formation is favored by methanol, and that an increase in both radical 
populations (measured as the aforementioned peak intensities normalized to 
Ar 750 nm intensity) increase with both particle number density and 
average diameter. 

Analogous to CVD of diamond films2, we find from TEM analysis that the 
selectivity of diamond phase is dependent on the C-H-O atomic ratio of the 
precursor. Specifically, methanol is found to produce a significant amount 
of sub-5 nm nanodiamonds, while ethanol mostly yields larger amorphous 
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and graphitic carbon. We suggest that the radical chemistry observed via 
OES (i.e., C2 versus CH populations) plays an important role in such 
observations, and we demonstrate that addition of H2 gas to ethanol vapor 
will recover the results given by methanol. 

References  
1P. Badziag et al., Nature 343, 244-245 (1990). 
2P. Bachmann et al., Diamond and Related Materials 1, Issue 1, 1-12 
(1991). 

9:20am  NS+SP-TuM5  Chemically-specific Intramolecular Imaging 
with Atomic Force Microscopy, Ozgur Sahin, Columbia University 
 INVITED 
Atomic force microscopy (AFM) is a powerful tool for imaging and 
chemical characterization of biological samples at molecular resolution in 
physiologically relevant environments. However, the localized tip-sample 
interactions limit high-resolution images to the topmost layer of surfaces. 
Consequently, characterizing the three-dimensional (3-D) inner structures 
of molecules has been a challenge. Here we demonstrate three-dimensional 
localization of chemical groups within a protein complex using AFM. We 
employ short DNA sequences to label specific chemical groups inside the 
protein complex. T-shaped cantilevers functionalized with complementary 
probe DNAs allow locating each label with sequence specificity and sub-
nanometer resolution. We measure pairwise distances between labels and 
reconstruct the 3-D loci of the target groups using simple geometric 
calculations. Experiments with the biotin-streptavidin complex showed that 
the 3-D loci of carboxylic acids of biotins are within 2-Angstroms of their 
respective 3-D loci in the corresponding crystal structure, suggesting AFM 
may complement existing structural biological techniques in solving 
structures that are difficult to study due to their size and complexity.  

11:00am  NS+SP-TuM10  Time-Resolved Small-Angle X-ray Scattering 
of Detonating Composition B-3 at the Advanced Photon Source, Rachel 
Huber, D. Podlesak, Los Alamos National Laboratory (LANL), M. Bagge-
Hansen, Lawrence Livermore National Laboratory (LLNL), D. Dattelbaum, 
M. Firestone, LANL, T. Graber, Washington State University, R. 
Gustavsen, LANL, R. Hodgin, LLNL, B.J. Jensen, LANL, L.M. 
Lauderbach, LLNL, P. Rigg, Washington State University, B. Ringstrand, 
LANL, S. Seifert, Argonne National Laboratory, N. Sinclair, Washington 
State University, E. Watkins, LANL, T.M. Willey, T. van Buuren, LLNL 
High explosive (HE) detonations drive chemical reactions under extreme 
conditions, in which explosive molecules are rapidly converted to small 
molecular products such as carbon, H2O, CO2 and N2. Solid carbon products 
are known to be comprised of several allotropes including amorphous 
carbon, graphite, onion-like graphitic carbon, fullerenes, and nanodiamonds 
(NDs). The formation of different allotropes arises from the temperatures 
and pressures conditions on the nanocarbon phase diagram accessed during 
the detonation. Previously, only the starting explosive samples, and post-
mortem soot were available for structural analysis. However, a fundamental 
understanding of how carbon particles form and evolve during a detonation 
must occur in real-time on the nanosecond timescale. New developments in 
in-situ time-resolved small angle X-ray scattering (TR-SAXS) has allowed 
for the measurement of multiple SAXS spectra of detonating Composition 
B-3 (60% TNT, 40% RDX) at the Dynamic Compression Sector (Sector 35-
B) at the Advanced Photon Source (Argonne National Laboratory). The TR-
SAXS measurements coupled to the detonation on the ns-timescale are the 
first of their kind in the United States. Through Guinier and Porod analysis 
of the TR-SAXS data, we are able to determine the size, morphology, and 
phase of the carbon allotropes at time delays behind the detonation front.1,2 
In addition, electron microscopy, X-ray photoelectron spectroscopy, and 
static SAXS were used to study the carbon solids in the post-detonation 
soot. By understanding the formation of solid carbon behind the detonation 
front, an improved theoretical framework may be applied to modeling the 
products equation of state for explosives.  

1 Ten, K. A., Pruuel, E. R. & Titov, V. M. SAXS Measurement and 
Dynamics of Condensed Carbon Growth at Detonation of Condensed High 
Explosives. Fullerenes, Nanotubes and Carbon Nanostructures20, 587-593, 
doi:10.1080/1536383x.2012.656542 (2012). 

2 Titov, V. M., Tolochko, B. P., Ten, K. A., Lukyanchikov, L. A. & Pruuel, 
E. R. Where and when are nanodiamonds formed under explosion? 
Diamond and Related Materials16, 2009-2013, 
doi:10.1016/j.diamond.2007.09.001 (2007). 

11:20am  NS+SP-TuM11  LEEM Imaging of Growth of Au on Ge(110), 
Bret Stenger, A. Dorsett, M.S. van Zijll, C.A. Gabris, C.K.B. Paw U, S. 
Chiang, University of California, Davis 
The growth of Au on Ge(110) was observed with Low Energy Electron 
Microscopy (LEEM). The objectives of this study were to control the 
growth of low-dimensional nanostructures and understand the collective 

diffusion behavior observed. Ge(110) was heated to 800°C and dosed with 
0.5 ML of Au. During deposition, islands grew to ~1-2 microns in width 
and ~2-3 microns in length, all oriented along the same direction. The 
islands were observed to move and change shape over a short period of time 
(< 1s) indicating the rapid collective movement of ~4x107 atoms. As the 
temperature decreased, the island behavior was also studied and revealed 
rapid island contractions which left traces on the Ge(110) surface. This 
island growth is similar to that previously observed for Ag on Ge(110), 
although the Ag islands are typically a factor of 10 narrower and often 3 to 
5 times longer. 

11:40am  NS+SP-TuM12  Strength and Fracture of Graphene Oxide 
Nanosheets, C. Cao, University of Toronto, Canada, M. Daly, B. Chen, 
C.V. Singh, Y. Sun, University of Toronto, Tobin Filleter, University of 
Toronto, Canada 
Graphene oxide (GO) is a layered material comprised of hierarchical 
features which possess vastly differing characteristic dimensions. GO has 
been applied as a good candidate for paper-like materials, robust fibers, and 
reinforcement elements in composites. The use of GO in these materials has 
been motivated in large part by the predicted high mechanical properties of 
individual GO monolayers. Recent experiments performed in our research 
group have measured the strength of GO monolayers to be ~25 GPa [1], 
which is in good agreement with previously theoretical predictions [2]. 
Macroscopic papers and fibers synthesized using GO, however, typically 
exhibit strengths on the order of 10-100’s of MPa’s. GO nanosheets 
represent the critical hierarchical structure that bridges the length-scale of 
these monolayer and bulk material architectures.  

In this study, the strength and fracture behavior of GO nanosheets were 
examined in situ with a micro-tensile device operated inside scanning and 
transmission electron microscopes (SEM/TEM) [3]. The tensile strength of 
GO nanosheets was measured to be as high as 12 ± 4 GPa, approaching the 
intrinsic strength of monolayer GO, and orders of magnitude higher than 
bulk GO papers. During mechanical failure, the nanosheets were observed 
to undergo intraplaner brittle fracture in highly localized regions through 
the cross-section of nanosheets due to interlayer load transmission via a 
hydrogen bond networks as reveled by complimentary Molecular Dynamics 
simulations.  

GO nanosheets were found to exhibit variations in strength that were 
strongly correlated with the effective volume. This is consistent with 
Weibull statistics, such that larger GO nanosheets are more likely to possess 
larger planar defects and adversely impact strength. Furthermore, the 
Young’s modulus was inversely correlated to sample thickness, and 
approached that of monolayer GO (~380 GPa) for thin samples. These 
trends provide strong evidence of the scaling effects on the mechanical 
properties of GO materials, and help to bridge the understanding of the 
mechanical behavior of hierarchical GO materials which will ultimately 
guide application as GO papers and coatings. 

[1] C. Cao et al., "High strength measurement of monolayer graphene 
oxide", Carbon, vol. 81, pp. 497-504, 2014. 

[2] J. T. Paci et al., "Computational studies of the structure, behavior upon 
heating, and mechanical properties of graphite oxide," Journal of Physical 
Chemistry C, vol. 111, pp. 18099-18111, 2007. 

[3] C. Cao et al., "Strengthening in graphene oxide nanosheets: Bridging the 
gap between interplanar and intraplanar fracture ", Nano Letters, In 
Revision, 2015. 

12:00pm  NS+SP-TuM13  Low-Temperature Atomic Layer Deposition 
of Crystalline Platinum Nanoclusters on Graphene Nanoplatelets Using 
(Methylcyclopentadienyl)-Trimethylplatinum and Oxygen, Hao Van 
Bui, Delft University of Technology, Netherlands, R. Bevaart, F. Grillo, 
Delft University of Technology, J.R. van Ommen, Delft University of 
Technology, Netherlands 
The thermal atomic layer deposition of platinum using 
(methylcyclopentadienyl)-trimethylplatinum (MeCpPtMe3) and oxygen has 
been investigated for more than a decade and performed on various 
supports, including flat surfaces [1, 2], nanoparticles [3], nanowires [4] and 
carbon-based nanomaterials [5, 6, 7, 8]. It has been demonstrated and 
widely accepted that this ALD process has a lower limit of deposition 
temperature of 200 °C. Here, we demonstrate the thermal Pt ALD on 
graphene nanoplatelets using MeCpPtMe3 and dry air (20% wt. O2), and 
show that highly dispersed and crystalline Pt nanoparticles can be obtained 
at a temperature as low as 80 °C. The feasible low-temperature deposition is 
attributed to the role of the graphene support that can activate molecular 
oxygen to form O2

- anions [9], which consequently enhances the oxidation 
reactions in ALD. Importantly, the low deposition temperatures (i.e., 80 °C 
and 100 °C) can prevent the ripening of nanoparticles and hinder the 
formation of new nuclei during the ALD, allowing for better control in 
particle size and distribution. In contrast, at higher temperatures (150-250 
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°C), the ripening occurs, and new nuclei are constantly formed during the 
deposition, resulting in a broader particle size distribution. 
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2D Materials Focus Topic 
Room: 212C - Session 
2D+EM+MC+MI+NS+SP+SS+TF-TuA 

Electronic and  Magnetic Properties of 2D Materials 
Moderator: Thomas Mueller, Vienna University of 
Technology, Austria, Xiaobo Yin, University of Colorado 
Boulder 

2:20pm  2D+EM+MC+MI+NS+SP+SS+TF-TuA1  Direct Capacitive 
Probe of Isospin Order in Graphene Bilayers, Andrea Young, University 
of California at Santa Barbara INVITED 
Bilayer graphene is a highly tunable electronic system in which electric 
fields can be used to control both the carrier density as well as the electronic 
structure. Like its monolayer cousin, the bilayer graphene Landau levels are 
characterized by approximate spin and valley degeneracy; unlike 
monolayer, however, the three dimensional structure of the bilayer allows 
control of the sublattice splitting with a perpendicular electric field. This 
feature has been used extensively to probe the phase diagram of interacting 
electrons, particularly within the zero energy Landau level, revealing a 
number of interacting states characterized by spin and/or valley order. 
Typically, however, the spin or valley order is inferred indirectly by varying 
conjugate fields and inferring the order from the resulting changes in 
conductivity. Here I will describe a technique capable of resolving layer-
polarization directly through high sensitivity capacitance measurements. 
The measurements confirm the known features of the bilayer graphene 
phase diagram, while revealing several new phases and a series of sharp 
features associated with phase transitions between states of different layer 
polarization. These features suggest a new mechanism for inversion 
symmetry breaking in Bernal stacked bilayer graphene. 

3:00pm  2D+EM+MC+MI+NS+SP+SS+TF-TuA3  Patterning 
Hydrogenated Graphene via Electron Beam Irradiation, Woo-Kyung 
Lee, K.E. Whitener, J.T. Robinson, P.E. Sheehan, Naval Research 
Laboratory 
We demonstrate that electron-beam irradiation selectively removes 
hydrogen atoms from hydrogenated graphene (HG) prepared by the Birch 
reduction.1 Hydrogen removal can pattern the surface with two different 
functionalities. First, we show that partially-hydrogenated graphene (Phg) 
on a SiO2 substrate is ferromagnetic, and that the local magnetic strength 
can be tuned using e-beam irradiation. An e-beam lithography system 
enables us to modulate or eliminate the permanent magnetization over a 
large area to produce a patterned magnetic array. Secondly, since removal 
of the hydrogens converts the highly electrically insulating HG back into 
conductive graphene, we can write chemically isolated, dehydrogenated 
graphene nanoribbons (GNR) as narrow as 100 nm. These GNRs have a 
low sheet resistance (≥ 31.5 Kω/□), only 10x that of the pristine graphene, 
and their Dirac points before and after e-beam irradiation appear at 
comparable gate voltages. 

1. W.K. Lee et al., Advanced Materials, 27, 1774 (2015). 

3:20pm  2D+EM+MC+MI+NS+SP+SS+TF-TuA4  Large-Area Low-
Pressure Synthesis of Single-Layer MoS2 Films and Schottky-Barrier 
Formation upon Metal Deposition, Michael Gomez, J. Martinez, M. 
Valentin, L. Bartels, UC Riverside 
Using a high vacuum CVD process we are able to synthesize large are 
monolayer MoS2 films. Organic chalcogen precursors are released into the 
growth chamber and react with a Mo filament creating films up to 2cm2 in 
size that are uniform and free of oxides. The films have pronounced 
photoluminescence intensity and are in Raman spectroscopy 
indistinguishable from exfoliated material. Metal contact formation to these 
films was investigated under UHV conditions utilizing X-Ray 
Photoelectron Spectroscopy . These measurements permit us to follow the 
formation of a Schottky Barrier with increasing metal film thickness on the 
Angstrom scale. We utilize core level spectroscopy to indicate the evolution 
of the MoS2 valence band under metal deposition.  

4:20pm  2D+EM+MC+MI+NS+SP+SS+TF-TuA7  Accelerating the 
Discovery of Alternative Fuel Catalysts through Intelligent 
Computational Framework, Altaf Karim, COMSATS Institute of 
Information Technology, Pakistan INVITED 
In today’s modern world of high performance computing, properties of 
materials can be predicted with high accuracy before these materials are 

ever made. In this scenario my focus has been on the development of state 
of the art computational framework based on intelligent/ smart self-learning 
algorithms for the design and discovery of catalytic materials. By giving 
some examples, I will describe how this enterprise of the predictive multi-
scale modeling/simulation has been passing through the stages of its 
evolution and how these complex algorithmic species integrated themselves 
into an intelligent python, which is helping scientists design & discover new 
materials for alternative fuel catalysis. In practice, our computational 
framework develops databases of candidate catalysts. Further this 
framework enables a set of algorithms to screen across a broad range of 
multi metallic catalytic materials with variable reactivity, selectivity, and 
stability while searching for materials with desired combination of 
properties required for the optimal catalytic performance for alternative fuel 
production. I would also explain that how our computational tools in 
catalyst design deal with the multi-component microstructures of catalysts 
composed of multi-element nano chunks. In order to tune up the rate 
limiting processes we can take advantage of the multi-element nano chunks. 
For example, on many catalytic surfaces the diffusion is rate limiting 
process for larger organic molecules. To enhance the diffusion such 
molecules on such surfaces, nano chunks of other materials (on which the 
diffusion of the organic molecules is comparatively higher) can be 
integrated in the catalyst’s surface, which improves the overall performance 
of the catalyst in terms of overall reactivity and also selectivity. In addition 
to that our tools also help us to filter out, from the databases, stable multi-
component microstructures of artificially engineered catalysts.  

5:00pm  2D+EM+MC+MI+NS+SP+SS+TF-TuA9  Probing Massive 
Dirac Electrons in Bilayer Graphene, Feng Wang, University of 
California at Berkeley INVITED 
Electrons in monolayer graphene are described by massless Dirac electrons, 
which exhibit unique quantum phenomena due to the pseudospin and Berry 
phase of the massless electrons. In this talk, I will discuss our effort in 
probing massive Dirac electrons in gapped bilayer graphene. In particular, I 
will discuss the topologically protected 1D conducting channel at the 
domain boundary of AB-BA bilayers, which can be attributed to the 
quantum valley Hall edge states in gapped bilayer graphene. 

5:40pm  2D+EM+MC+MI+NS+SP+SS+TF-TuA11  Combining 
Photoemission and Photoluminescence Microscopy to Study Substrate 
Transfer Process Effects in Chemical Vapor Deposited MoS2 
Monolayers, Olivier Renault, M. Frégnaux, Univ. Grenoble Alpes/ CEA, 
LETI, MINATEC Campus, France, J. Bleuse, Univ. Grenoble-Alpes & 
CEA-INAC, France, H. Kim, Univ. Grenoble Alpes/ CEA, LETI, 
MINATEC Campus, France, D. Voiry, M. Chhowalla, Rutgers University 
Within the perspective of integrating two-dimensional transition metal 
dichalcogenides (2D TMDs) such as molybdenum disulfide (MoS2), into 
devices, it becomes of utmost importance to assess the influence of each 
step of the device fabrication process on the optical and transport properties 
of the MoS2 single layer (1L) domains. Particularly at the deposition stage 
the properties may be influenced by substrate effects [1], and later, transfer 
processes may further alter the desired properties of TMDs. This requires 
effective microscopic characterization techniques. 

We present a characterization method combining photoemission 
microscopy (XPEEM and Kpeem) and photoluminescence microscopy to 
compare the structural, optical and electronic properties of both as-
deposited and transferred MoS2 1L domains onto different substrates. 
XPEEM is used with laboratory sources in both direct space imaging for 
work function and core-level mapping [2] and particularly in the 
momentum microscopy mode (k-PEEM) to perform parallel angular 
imaging and retrieve the band structure in a one shot experiment [3]. Micro-
photoluminescence spectroscopy at low (5K) and room temperature is used 
to detect the specific radiative recombination that occurs in MoS2 1L (direct 
band gap semiconductor behavior) and to evidence the eventual presence of 
midgap states caused by process-induced defects. The results of both 
characterization techniques will be presented for MoS2 1L domains 
transferred onto silica and gold substrates highlighting the roles of substrate 
nature (metal or insulant), surface roughness, and the presence of structural 
defects whether induced by the preparation process or intrinsic such as grain 
boundaries. 

[1] Jin et al. Phys. Rev. Lett. 111 (2013), 106801. 

[2] Kim, Renault, et al. Appl. Phys. Lett. 105 (2014) 011605. 

[3] Mathieu et al., PRB 83 (2011) 235436. 
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2D Materials Focus Topic 
Room: 212C - Session 2D+MN+NS+SP+SS+TF-WeM 

Mechanical and Thermal Properties of 2D Materials 
Moderator: Oleg Yazev, Ecole Polytechnique Fédérale de 
Lausanne (EPFL), Petra Reinke, University of Virginia 

8:00am  2D+MN+NS+SP+SS+TF-WeM1  Mechanical Properties of 
Polycrystalline Graphene, Joseph Gonzales, University of South Florida, 
R. Perriot, Los Alamos National Laboratory, I.I. Oleynik, University of 
South Florida 
Experimental investigation of mechanical properties indicates that the 
polycrystalline graphene grown by chemical vapor deposition is as strong as 
pristine. The microscopic characterization of graphene samples using 
Atomic Force microscopy (AFM) nano-indentation is limited in the sense 
that the detailed mechanical characteristics such as stress and stain 
distributions under the indenter, elastic moduli and breaking strength are not 
available directly from experiment. Using accurate description of 
interatomic interactions provided by novel screened environment-dependent 
bond order, (SED-REBO) potential, we performed large-scale molecular 
dynamics investigations of mechanical properties of polycrystalline 
graphene under conditions mimicking nano-indentation AFM experiments. 
The atomically resolved characterization of the stress and strain 
distributions under indenter are used to understand detailed mechanisms of 
graphene strength and failure. The breaking strength, the crack initiation 
and propagation are investigated as a function of the grain boundary 
structure and the grain size distribution as well as the position of the 
indenter – at the center of the grain, at the a single grain boundary and at the 
junction of three or more grain boundaries.  

8:40am  2D+MN+NS+SP+SS+TF-WeM3  Lévy Flights Found in 
Freestanding Graphene, Paul Thibado, University of Arkansas, M. Neek-
Amal, F. Peeters, University of Antwerp, Belgium 
Local, long-time evolution measurements of the height fluctuations of a 2D 
membrane allows examination of the fundamental foundations of statistical 
mechanics in soft condensed matter. However, such measurements have 
proved elusive, thereby forcing critical theoretical assumptions in the best 
models. We report sub-nanometer, high-bandwidth height measurements of 
freestanding graphene using constant-current, point-mode scanning 
tunneling microscopy, as a follow-up to our previous related works [1-2]. 
By tracking atoms directly, the ability to measure dynamic events is 
increased by a factor of 1000 over the present state-of-the-art membrane 
imaging technology. Surprisingly, the membrane velocities follow the 
Cauchy-Lorentz distribution consistent with a Lévy process, rather than the 
expected Maxwell-Boltzmann distribution. We introduce a new theoretical 
approach using fractional-stochastic calculus. 

Acknowledgements: 

This work was supported in part by Office of Naval Research (USA) under 
Grant No. N00014-10-1-0181 and National Science Foundation (USA) 
under Grant No. DMR- 0855358. 

References: 

[1] P. Xu, M. Neek-Amal, S.D. Barber, J.K. Schoelz, M.L. Ackerman, P.M. 
Thibado, A. Sadeghi, and F.M. Peeters, Nature Comm. 5, 3720 (2014). 

[2] M. Neek-Amal, P. Xu, J.K. Schoelz, M.L. Ackerman, S.D. Barber, P.M. 
Thibado, A. Sadeghi, and F.M. Peeters, Nature Comm. 5, 4962 (2014). 

9:00am  2D+MN+NS+SP+SS+TF-WeM4  Multilayer Graphene 
Strength Characterization, Joseph Rowley, N. Boyer, K. Berry, R.C. 
Davis, Brigham Young University, R. Creighton, J. Abbott, S. Cornaby, M. 
Harker, Moxtek Inc., R. Vanfleet, Brigham Young University 
Although there are many examples in the literature of multilayer graphene 
fabrication and electrical characterization, there is a lack of data on the 
mechanical properties of multilayer graphene, especially many layer. 
Conversely there is data about the mechanical properties of single layer 
graphene, and limited information about bilayer and few layer, but little 
about many layer. Multilayer Graphene was fabricated using chemical 
vapor deposition on a Nickel catalyst. Different flow rates and cooling rates 
were investigated to produce many layer films. Due to the high strength in 
graphene, these films were able to be suspended over millimeter size 
openings and have a differential pressure applied. This allowed for the 
characterization of the strength of these membranes using bulge testing. 

9:20am  2D+MN+NS+SP+SS+TF-WeM5  Nanoelectromechanical 
Systems Based on 2D Materials beyond Graphene -- Effects from 
Geometry, Nonlinearity, and Anisotropy, Zenghui Wang, Case Western 
Reserve University INVITED 
Investigating and manipulating the mechanical degree of freedom in two-
dimensional (2D) nanostructures present unique challenges and 
opportunities: such effort demands advanced fabrication and measurement 
schemes, and offers new insight into the physical properties of 2D 
materials. I will present our explorations and findings in mechanical 
processes at the nanoscale, through studying resonant 
nanoelectromechanical systems (NEMS) based on 2D materials beyond 
graphene (e.g., molybdenum disulfide, black phosphorus, etc.). I will 
discuss the implications of geometrical irregularities on the nanomechanical 
responses of 2D-material-based resonators; impacts of device and material 
parameters on the mechanical nonlinearity and motional noise in 2D 
resonant transducers; and effects of material anisotropy in nanomechanical 
resonators based on new types of highly anisotropic 2D materials. These 
findings open new pathways towards nanomechanical coupling and tuning 
of the physical properties in 2D nanomaterials, and offer opportunities for 
building novel devices with new multimode functions.  

11:00am  2D+MN+NS+SP+SS+TF-WeM10  Phonon Spectroscopy of 
Graphene Field Effect Devices with the STM, Fabian Natterer, Y. Zhao, 
J. Wyrick, NIST/CNST, W.Y. Ruan, Y.-H.C. Chan, M.-Y.C. Chou, Georgia 
Institute of Technology, N.B. Zhitenev, J.A. Stroscio, NIST/CNST 
Phonon spectroscopy of graphene by inelastic electron tunneling 
spectroscopy with the STM has been elusive in previous measurements [1–
3]. The difficulty lies within the weak phonon signatures that are buried by 
other dominant spectral features that inhibit a clear distinction between 
phonons and miscellaneous excitations. Utilizing a back gated graphene 
device that permits continuous adjustment of the global charge carrier 
density, we employ an averaging method where individual tunneling spectra 
at varying charge carrier density are condensed into one representative 
spectrum [4]. This method improves the signal for inelastic transitions that 
appear at constant threshold, while it broadens and thereby suppresses 
dispersive spectral features. We use this method to demonstrate the 
mapping of the total graphene phonon density of states, in good agreement 
with density functional calculations. Using the knowledge about the 
phonons thusly obtained, we closely examine our gate resolved spectra and 
observe a surprising and abrupt change in the phonon intensity when the 
graphene charge carrier type is switched through a variation of the back gate 
electrode potential. This sudden variation in phonon intensity is asymmetric 
in carrier type, depending on the sign of the tunneling bias. We invoke a 
resonance mediated tunneling process that relies on the presence of tip-
induced quasi-bound state resonances in graphene, resembling whispering 
gallery modes for electrons and holes [5]. Our tip-sample system thereby 
mimics a giant molecular state and shares analogies with resonant enhanced 
excitations of molecular vibrational or rotational modes [6–9]. 

[1] Y. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. 
Zettl, and M. F. Crommie, Nature Phys 4, 627 (2008). 

[2] V. W. Brar, S. Wickenburg, M. Panlasigui, C.-H. Park, T. O. Wehling, 
Y. Zhang, R. Decker, Ç. Girit, A. V. Balatsky, S. G. Louie, A. Zettl, and M. 
F. Crommie, Phys. Rev. Lett. 104, 036805 (2010). 

[3] G. Li, A. Luican, and E. Andrei, Phys. Rev. Lett. 102, 176804 (2009). 

[4] C. E. Malec and D. Davidović, Journal of Applied Physics 109, 064507 
(2011). 

[5] Y. Zhao,, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva3, C. 
Lewandowski, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, 
and J. A. Stroscio, Science 348, 672 (2015). 

[6] J. Gadzuk, Phys. Rev. B 31, 6789 (1985). 

[7] B. Persson and A. Baratoff, Phys. Rev. Lett. 59, 339 (1987). 

[8] A. Baratoff, Journal of Vacuum Science & Technology A: Vacuum, 
Surfaces, and Films 6, 331 (1988). 

[9] F. D. Natterer, F. Patthey, and H. Brune, ACS Nano 8, 7099 (2014). 

11:20am  2D+MN+NS+SP+SS+TF-WeM11  Edge-state-induced 
Stabilization of Dopants in Graphene, Yuuki Uchida, A. Akaishi, J. 
Nakamura, The University of Electro-Communications (UEC-Tokyo) and 
JST CREST, Japan 
Impurity doping is an efficient way to modify electronic properties of 
graphene. Several groups have reported the stability of dopants in graphene, 
especially near edges of graphene: Impurity atoms prefer to locate at the 
zigzag edge of graphene rather than the armchair one[1]. It has also been 
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reported that the electronic properties are strongly dependent upon the 
location of dopants, which is derrived from the non-equivalence of the two 
sublattice[2]. It is well-known that the edge-localized state emerges at the 
zigzag edge[3], which is specific for the so-called bipartite lattice. However, 
it has not been clarified yet how the edge-state affects the dopant stability 
depending on the sublattice. In this study, we investigate the role of the 
sublattice-dependent edge-state on the stabilization of impurities. We 
evaluate the dependence of the structural stability on the distance of 
impurity atoms from the zigzag edge using first-principles calculations 
within the density-functional theory. We have employed two types of 
graphene nanoribbons (GNRs) with the armchair- (AGNR) or the zigzag- 
(ZGNR) edge. 

For AGNR, the formation energy of dopants does not change neither 
systematically nor monotonically as a function of the distance from the 
edge. On the other hand, for ZGNR, the formation energy is lower than that 
for AGNR and decreases with decreasing distance from the edge. In 
addition, two types of tendencies are confirmed for odd- and even-
numbered sites from the zigzag edge, corresponding to the different 
sublattices of the bipartite lattice. 

Such peculiar behavior as for of the formation energy can be explained as 
follows : The doped N atom donates its electron to the unoccupied-edge-
state just above the Fermi level, resulting in the lowering of the one-electron 
energy of this state. The smaller the distance of N atoms from the zigzag 
edge is, the larger the electrostatic attraction between electrons of edge-
localized states and positively-charged ion-shell at the N site becomes. 
Further, N atoms are much more stabilized at the odd-numbered site, 
because the edge-state has finite amplitude only at the odd-numbered sites. 

[1]S. F. Huang et al., Phys. Rev. B. 80, 235410 (2009) 

[2]J. Jiang et al., J. Chem. Phys. 136, 014702 (2012) 

[3]M. Fujita et al., J. Phys. Soc. 65, 1920 (1996) 

11:40am  2D+MN+NS+SP+SS+TF-WeM12  Exploring the Thermal 
Stability of Two-Dimensional Black Phosphorus, Xiaolong Liu, J.D. 
Wood, K.-S. Chen, E. Cho, M.C. Hersam, Northwestern University 
Two dimensional (2D) black phosphorus (BP) has attracted significant 
attention due to its superlative electronic and optical properties. Unlike 
graphene, its intrinsic and thickness-dependent band gap makes it feasible 
for direct application in electronic and optoelectronic devices.1 However, 
before 2D BP can be effectively employed in such applications, it is 
necessary to establish the thermal stability of 2D BP since annealing is a 
key element in most device fabrication processes. Towards this end, we 
have utilized in situ scanning/transmission electron microscopy and 
spectroscopy methods to characterize the thermal decomposition process of 
mechanically exfoliated 2D BP.2 The decomposition is observed to occur at 
~400 °C in the form of sublimation, compared to the 550 °C of bulk BP. 
This decomposition initiates via eye-shaped cracks along the [001] direction 
and then continues until only a thin, amorphous red phosphorous-like 
skeleton remains. In situ electron energy loss spectroscopy, energy-
dispersive X-ray spectroscopy, and energy-loss near-edge structure changes 
provide further quantitative insight into this chemical transformation 
process. 

(1) Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. Nature Comm.2014, 5, 
4475. 

(2) Liu, X.; Wood, J. D.; Chen, K.-S.; Cho, E.; Hersam M. C. J. Phys. 
Chem. Lett.2015, 6, 773-778. 

12:00pm  2D+MN+NS+SP+SS+TF-WeM13  Gas Permeation Through 1 
nm Thick Carbon Nanomembranes, A. Beyer, M. Ai, Bielefeld 
University, Germany, S. Shishatskiy, J. Wind, Helmholtz-Zentrum 
Geesthacht, Germany, X. Zhang, V. Chinaryan, Y. Yang, Armin 
Gölzhäuser, Bielefeld University, Germany 
The gas permeation characteristics of 1 nm thick carbon nanomembranes 
(CNMs) from self-assembled monolayers are reported. The assembly of 
CNMs onto polydimethylsiloxane (PDMS) support membranes allows 
determination of gas permeation characteristics. Single layer and triple layer 
CNMs were investigated in respect to permeation of hydrogen, helium, 
carbon dioxide, oxygen, nitrogen, argon, methane and ethane. In addition, 
the CNM-PDMS composites were characterized by X-ray photoelectron 
spectroscopy, helium-ion microscopy as well as atomic force microscopy. A 
careful analysis about the contribution of the PDMS support membranes to 
the gas permeation allowed an estimate of the intrinsic CNM permeances. 
These values indicate a molecular sieve-like property of CNMs which is 
attributed to molecular-sized channels in CNMs. As an example, hydrogen 
and carbon dioxide gas molecules display an order of magnitude higher 
permeance values for single layer CNMs in comparison to oxygen and 
nitrogen, which possess larger kinetic diameters. 

Scanning Probe Microscopy Focus Topic 
Room: 212A - Session SP+AS+NS+SS-WeM 

Advances in Scanning Probe Microscopy 
Moderator: An-Ping Li, Oak Ridge National Lab, Saban 
Hus, Oak Ridge National Laboratory 

8:00am  SP+AS+NS+SS-WeM1  Designer Electrons: Quantum 
Information and New Particles in Atomically Assembled Matter, Hari 
Manoharan, Stanford University INVITED 
The observation of massless Dirac fermions in monolayer graphene has 
propelled a new area of science and technology seeking to harness charge 
carriers that behave relativistically within solid-state materials. Using low-
temperature scanning tunneling microscopy and spectroscopy, we show the 
emergence of Dirac fermions in a fully tunable condensed-matter system—
molecular graphene—assembled via atomic manipulation of a conventional 
two-dimensional electron system in a surface state. We embed, image, and 
tune the symmetries underlying the two-dimensional Dirac equation into 
these electrons by sculpting the surface potential with manipulated 
molecules. By distorting the effective electron hopping parameters into a 
Kekulé pattern, we find that these natively massless Dirac particles can be 
endowed with a tunable mass engendered by the associated scalar gauge 
field, in analogy to the Higgs field. With altered symmetry and texturing of 
the assembled lattices, the Dirac fermions can be dressed with gauge 
electric or magnetic fields such that the carriers believe they are in real 
fields and condense into the corresponding ground state, as confirmed by 
tunneling spectroscopy. Using these techniques we ultimately fabricate a 
quantum Hall state without breaking time-reversal symmetry, in which 
electrons quantize in a gauge magnetic field ramped to 60 Tesla with zero 
applied laboratory field. We show that these and other chiral states now 
possible to realize have direct analogues in topological insulators, and can 
be used to guide or confine charge in nontrivial ways or to synthesize new 
particles [1,2]. 

[1] K. K. Gomes, W. Mar, W. Ko, F. Guinea, H. C. Manoharan, “Designer 
Dirac Fermions and Topological Phases in Molecular Graphene,” Nature 
483, 306–310 (2012). 

[2] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, V. Pellegrini, 
“Artificial Honeycomb Lattices for Electrons, Atoms, and Photons,” Nature 
Nanotechnology 8, 625–633 (2013).  

8:40am  SP+AS+NS+SS-WeM3  Scanning Quantum Dot Microscopy, 
Ruslan Temirov, C.W. Wagner, M.F.B.G. Green, P.L. Leinen, 
Forschungszentrum Juelich GmbH, Germany, T.D. Deilmann, P. Krueger, 
M.R. Rohlfing, Muenster University, Germany, F.S.T. Tautz, 
Forschungszentrum Juelich GmbH, Germany 
Interactions between atomic and molecular objects are to a large extent 
defined by the nanoscale electrostatic 

potentials which these objects produce. Consequently, a tool for nanometre 
scale imaging and quantification of 

local electrostatic fields could help in many areas of nanoscience research. 
In this contribution we introduce a 

scanning probe technique that for the first time enables truly three-
dimensional imaging of local electrostatic 

potential fields with sub-nanometre resolution. Registering single electron 
charging events of a molecular 

quantum dot attached to the tip of a tuning fork atomic force microscope 
operated at 5 K, we image the 

quadrupole field of a single molecule adsorbed on a metal surface. To 
demonstrate quantitative measurements, 

we investigate the Smoluchowski dipole field created by a single metal 
adatom adsorbed on a metal surface. We 

show that because of its high sensitivity the technique can probe 
electrostatic potentials at large distances from 

their sources, which should allow for the imaging of samples with increased 
surface roughness. 

Reference 

[1] C. Wagner, M. F. B. Green, P. Leinen, T. Deilmann, P. Krüger, M. 
Rohlfing, R. Temirov, F. S. Tautz 

arXiv:1503.07738 (2015) 
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9:00am  SP+AS+NS+SS-WeM4  Local Probing of the Photo-carrier 
Lifetime by Kelvin Probe Force Microscopy, Nicolas Chevalier, S. 
Pouch, D. Mariolle, Univ. Grenoble Alpes/ CEA, LETI, MINATEC 
Campus, France, B. Grevin, Univ. Grenoble Alpes/ CEA, INAC, SPrAM, 
LEMOH, France, Ł. Borowik, Univ. Grenoble Alpes/ CEA, LETI, 
MINATEC Campus, France 
The photo-carrier lifetime plays a major role in the overall efficiency of a 
solar cell because it limits the proportion of photo-generated charges 
collected at the electrodes. This lifetime, which should be ideally as large as 
possible in an organic or inorganic solar cell, is rather difficult to measure 
in nanostructured materials or in more complex hybrid systems, indirect 
band-gap semiconductors, and ultra-thin layers. Identifying the losses 
mechanisms is one of the main objectives for increasing the performances 
of solar cells. Most of the experimental approaches developed so far consist 
in studying recombination by techniques such as transient photovoltage 
measurements or charge extraction. All these techniques average sample 
properties over macroscopic scales, making them unsuitable for directly 
assessing the impact of local heterogeneity on the recombination process. In 
this paper, we propose a steady method to measure the photo carrier lifetime 
by photo-modulated techniques based on Kelvin probe force microscopy 
(KPFM). [1] Additionally, KPFM technique provides a spatially resolved 
measurement, which is applicable on the overall of solar cells.  

We will present the principle of this original method based on the 
measurement of the surface potential by KPFM under an illumination with a 
rectangular waveform light modulation. Photo-carrier lifetime down to µs 
scale is reachable with our experimental setup. The modulation-dependent 
surface potential is plotted as a function of the frequency. Assuming an 
immediate generation time under illumination and an exponential decay of 
the surface potential during the dark condition, the averaged surface 
potential over a cycle can be fitted as a function of the frequency by simple 
equation where the only fit parameter is the photocarrier-lifetime. [2] 
Instrumental aspects as well as data treatment will be reviewed. 
Measurements obtained on silicon nanocrystals embedded in 30 nm film of 
silicon dioxide [3] and on organic donor-acceptor blend (PBTFB and 
PCBM) [4] will be presented to illustrate the potential of the technique.  

This work was supported by the French “Recherche Technologique de 
Base” Program and performed in the frame of the trSPV Nanoscience 
project. The measurements were performed on the CEA Minatec 
Nanocharacterization Platform (PFNC). 

1. Ł. Borowik et al. Phys. Rev. B 82, 073302 (2010). 

2. Ł. Borowik et al. Nanotechnology 25, 265703 (2014). 

3. D. Asakura et al. Phys. Rev. Lett. 93, 247006 (2004). 

4. N. Delbosc et al. RSC Adv 4, 15236 (2014). 

9:20am  SP+AS+NS+SS-WeM5  Nanoscale Capacitance-Voltage (C-V) 
Curves: Using Scanning Microwave Impedance Microscopy (sMIM) to 
Characterize Local Electrical Properties of Linear and Non-Linear 
Materials, Stuart Friedman, Y. Yang, O. Amster, PrimeNano, Inc. 
Understanding and optimizing advanced materials frequently requires 
detailed knowledge of nanoscale electrical properties. Scanning probe 
techniques such as scanning tunneling microscopy (STM), conductive AFM 
(cAFM), scanning capacitance microscopy (SCM), and Kelvin probe force 
microscopy (KPFM) provide such nano-electrical measurements, but are 
generally limited in the classes of materials they can characterize or the 
properties they can measure. Scanning microwave impedance microscopy 
(sMIM) uses GHz frequency microwaves and shielded AFM probes to 
directly measure the impedance (capacitance and conductance) of the tip 
sample interface. As such sMIM is sensitive to the permittivity and 
conductivity of a wide variety of samples including dielectrics, conductors, 
and semiconductors.  

When sMIM is applied to non-linear materials, changing the tip sample bias 
changes the local electric field thereby changing the local electrical 
properties of the sample just under the AFM tip. The electric field induced 
changes in the sample create changes in the tip-sample impedance that can 
be measured by sMIM. For example, when imaging doped semiconductor 
samples, the tip sample interface forms either a metal-semiconductor 
junction or a metal-insulator-semiconductor junction. Plotting the sMIM 
measured capacitance as a function of the tip sample bias voltage produces 
the equivalent of a typical capacitance-voltage curve, but from nanoscale 
regions selected from an AFM image. C vs V results from doped silicon 
samples that closely match theoretical calculations will be discussed. The 
talk will also present results from advanced and novel materials and 
devices, such as III-V semiconductors, 2D materials and 1D structures 
where sMIM data has been used to assess non-linear behavior and 
characterize dopant type and distribution. 

9:40am  SP+AS+NS+SS-WeM6  STM Study of the Correlation between 
Structural, Magnetic, and Electronic Properties of Co Nano-Islands on 
Cu(111), Jewook Park, C. Park, M. Yoon, Z. Gai, A.P. Baddorf, A.-P. Li, 
Oak Ridge National Laboratory 
An epitaxially grown Co nano-island on Cu(111) surface is a model system 
to study the correlation between structural, magnetic, and electrical 
properties of nanophase materials. We carried out an extensive study on Co 
islands by using spin-polarized scanning tunneling microscopy and 
spectroscopy (SP-STM/S) at low temperatures (130 K and 38 K). Two 
structurally different island types are clearly distinguished, rotated by 180 
about the surface normal due to a stacking fault in one type of the islands. 
The triangular Co islands are 5-20 nm wide and 4 Å high. Regardless of the 
structural asymmetry, both faulted and un-faulted Co islands possess two 
distinctive spin orientations. With Cr-coated W-tip as a spin-polarized 
probe, bias-dependent tunneling conductance maps are measured on Co 
islands. An antiparallel spin-orientation between magnetized tip and Co 
islands display higher conductance compared to a parallel relation at -400 
meV and vice versa at around Fermi-level, which is verified by density 
functional theory calculations. Furthermore, by recording 23 hours of time-
lapse images from the same Co islands, we demonstrate a time-dependent 
correlation between structural, magnetic, and electrical behaviors. We find 
that a contamination-induced structural change modifies the magnetic 
properties of Co islands and is confirmed by theoretical calculations. 

This research was conducted at the Center for Nanophase Materials 
Sciences, which is a DOE Office of Science User Facility, and supported by 
the Laboratory Directed Research and Development Program of Oak Ridge 
National Laboratory, managed by UT-Battelle, LLC, for the US DOE. 

11:00am  SP+AS+NS+SS-WeM10  Probing Electrostatic Field Effect in 
Quantum Materials by Microwave Impedance Microscopy, Keji Lai, 
University of Texas at Austin INVITED 
The research of complex quantum materials, in which a dazzling number of 
emergent phenomena take place in the nanoscale, is a major theme in 
modern condensed matter physics. For real-space imaging of complex 
systems, electrical impedance microscopy fills an important void that is not 
well represented by the existing local probes. Using shielded cantilever 
probes and sensitive microwave electronics, we can now perform non-
invasive electrical imaging with sub-100nm resolution and sub-aF 
sensitivity.  

Combining the cryogenic microwave impedance microscopy (MIM) and a 
spin-coated thin ionic gel layer, we are able to visualize the metal-insulator 
transition of functional materials in electrolyte-gated electric double-layer 
transistors. The microwave images acquired at different gate voltages 
clearly show the spatial evolution of channel conductivity and its local 
fluctuations through the transition. By applying a large source-drain bias 
above the glass transition temperature of the gel, an uneven conductance 
profile is established across the EDLT channel, which can be visualized by 
the MIM and further investigated by transport measurements and numerical 
simulations. The combination of ultra-thin ion-gel gating and microwave 
microscopy paves the way for studying the microscopic evolution of phase 
transitions in complex materials induced by electrostatic field effects. 

11:40am  SP+AS+NS+SS-WeM12  Subsurface Visualization of Soft 
Matrix using 3D-Spectroscopic Atomic Force Acoustic Microscopy, 
Kuniko Kimura, K. Kobayashi, A. Yao, H. Yamada, Kyoto University, 
Japan 
Nondestructive visualization of subsurface features of various materials 
with nanometer-scale spatial resolution is strongly demanded in a wide 
variety of scientific research fields such as nanoelectronics, nanomechanics 
and life science. Recently, many research groups have demonstrated the 
visualization of nanometer-scale subsurface features using various 
techniques based on atomic force microscopy (AFM) [1-4]. (All references 
and figures are given in Supplement.) We recently demonstrated the 
imaging of Au nanoparticles buried under 900 nm from the surface of a 
polymer matrix by atomic force acoustic microscopy (AFAM), as shown in 
Fig. 1 [5]. In AFAM, the amplitude and phase of the cantilever vibration at 
the contact resonance frequency induced by the sample excitation are 
measured, which allows us the quantitative evaluation of surface stiffness 
[6]. The AFAM images in Fig. 1 show that the surface viscoelasticity of the 
soft matrix is affected by subsurface hard objects such as the Au 
nanoparticles buried even roughly 1 micro-meter below the surface. 
However, only from AFAM images, it is difficult to determine which the 
dominant mechanism for the subsurface imaging is viscosity variation or 
elasticity variation, because AFAM images were taken at a single excitation 
frequency near contact resonance.  

In this presentation, we discuss the origin of the visualization of subsurface 
features in soft matrix based on spectroscopy of AFAM [7]. We recorded 
the amplitude and phase spectra at every pixel of the AFAM image as 
represented in Fig. 2, which we call 3-dimensional spectroscopic atomic 
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force acoustic microscopy (3D-spectroscopic AFAM). A schematic diagram 
of the 3D-spectroscopic AFAM is shown in Fig. 3. After the tip was 
brought into contact with the surface, we first measured the contact 
resonance frequency (fc). Then we recorded the amplitude and phase 
spectra measured by a lock-in amplifier, while the tip was raster-scanned 
with the contact mode. At each scanning pixel, the excitation frequency was 
swept with the span of 25 kHz which was centering around fc, whose sweep 
time was 35 msec. The total acquisition time for 128 x 128 pixels took 
about 20 min.  

Using this method, we can compare the frequency spectrum measured on 
the subsurface Au nanoparticle with that on another position having no 
subsurface particle, as shown in Fig. 4. We can also reconstruct AFAM 
images of arbitrary frequencies within the sweep frequency range, which is 
the meaning of “3-dimensional”. Moreover, the 3D-spectroscopic AFAM 
enables us to characterize the amplitude and phase spectra and to detect the 
variation that may be caused by the nonlinear tip-sample interactions.  

12:00pm  SP+AS+NS+SS-WeM13  Quantifying the Effects of Cantilever 
Modes Shapes on Studies of the Liquid-Solid Interface, Aleks Labuda, 
M. Viani, D. Walters, R. Proksch, Asylum Research, an Oxford Instruments 
company 
At the core of most AFM measurements is the assumption that the motion 
of the cantilever probe can be well quantified. However, most AFM systems 
use a “beam bounce” optical beam deflection (OBD) method which, 
because it is fundamentally an angular measurement, only provides accurate 
tip position information when the mode shape of the cantilever matches the 
calibration conditions. For example, if the OBD sensitivity is calibrated 
with a force curve, the calibration holds true only for experiments where the 
mode shape is similar to an end-loaded cantilever. This assumption is 
quickly violated when the cantilever is oscillated at frequencies different 
from the calibration. This is especially true in liquids, where Q~1 and the 
combination of significant base motion and hydrodynamic effects lead to a 
variety of different mode shapes that are strongly frequency dependent (see 
Figure). This clearly demonstrates that the sensitivity (nm/V) is actually a 
frequency dependent quantity. Worse, it may also drift with time. Another 
consequence is that the effective stiffness of the cantilever, which depends 
on mode shape, is also highly frequency dependent. Both of these effects 
cause quantitative misinterpretation of the tip-sample interaction and 
artifacts in imaging contrast. These problems affect both dynamic AFM 
modes (such as AM-AFM and FM-AFM) as well as sub-resonance modes 
such as fast force mapping and force modulation.  

To quantify this effect, we present measurements based on Ref [1-2] using a 
modified commercial AFM that combines a standard OBD detector with an 
integrated laser Doppler vibrometer (LDV) system that directly measures 
displacement. As shown in the Figure, The OBD and LDV can be used 
simultaneously, such that the cantilever base motion or tip motion can be 
accurately monitored with the LDV during an AFM experiment – 
independent of the OBD and any feedback loops. In the Figure, the ~2 µm 
LDV laser spot was scanned along the cantilever for high-resolution in situ 
mapping of its dynamics across a wide spectrum of frequencies and 
showing significant deviations from ideal mode shapes over the entire 
frequency range. 

The effects of these frequency-dependent mode shapes are then quantified 
by appropriate modeling for a variety of experimental conditions, and 
demonstrated experimentally using stiff levers for AM-AFM at the calcite-
water interface and soft levers for fast force mapping of polymeric 
materials.  
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2D Materials Focus Topic 
Room: 212C - Session 2D+EM+IS+MC+NS+SP+SS-WeA 

Dopants and Defects in 2D Materials 
Moderator: Daniel Gunlycke, Naval Research Laboratory, 
Zenghui Wang, Case Western Reserve University 

2:20pm  2D+EM+IS+MC+NS+SP+SS-WeA1  The Effect of Defect 
Density on the Mechanical Properties of Graphene, Jonathan Willman, 
J.M. Gonzales, University of South Florida, R. Perriot, Los Alamos 
National Laboratory, I.I. Oleynik, University of South Florida 
Recent experiments involving nanoindentation of graphene have 
demonstrated counterintuitive weakening of Young’s modulus with 
increasing concentrations of point defects in graphene in contradiction to 
previous investigations. To fully resolve these inconsistencies we perform 
large-scale molecular dynamics simulations of nanoindentation under 
conditions of Atomic Force Microscopy (AFM) nanoindentation 
experiments. The reliable description of interatomic interactions is achieved 
by using recently developed screened environment-dependent bond order 
(SED-REBO) potential. The elastic properties of the defective graphene, the 
breaking strength and the mechanisms of fracture under indenter are 
investigated as a function of type of point defects as well as their 
concentration.  

2:40pm  2D+EM+IS+MC+NS+SP+SS-WeA2  Investigation of Grain 
Boundaries in CVD Grown MoS2, Kolyo Marinov, D. Ovchinnikov, D. 
Dumcenco, A. Kis, Ecole Polytechnique Fédérale de Lausanne (EPFL), 
Switzerland 
We present the characterization of grain boundaries in polycrystalline CVD-
grown MoS2 films. Epitaxial growth on sapphire substrates is achieved 
leading to preferred orientation of the domains, which is confirmed by 
transmission electron microscopy experiments. Using Scanning Kelvin 
probe microscopy the local potential drop across the three predominant 
types of grain boundaries in field effect transistors is investigated. These 
measurements demonstrate that the interfaces between single grains do not 
degrade the electrical conductivity, which is due to the well aligned growth 
of the single domains. Furthermore, the relatively high mobility of electrons 
in the polycrystalline material stays constant even in devices with channels 
of 80 µm containing multiple grains, separated by grain boundaries. Our 
approach is a step forward to fabrication of large-area, uniform and high 
quality single-layer CVD MoS2.  

3:00pm  2D+EM+IS+MC+NS+SP+SS-WeA3  Polycrystalline 2D 
Materials: Atomic Structure and Electronic Transport Properties, Oleg 
Yazyev, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 
 INVITED 
Grain boundaries and dislocations are intrinsic topological defects of 
polycrystalline materials, which inevitably affect their physical properties. 
In my talk, I will discuss the structure of topological defects in two-
dimensional (2D) materials such as graphene and monolayer transition 
metal dichalcogenides (TMDCs) [1].  

I will first introduce a general approach for constructing dislocations in 
graphene characterized by arbitrary Burgers vectors and grain boundaries 
covering the complete range of possible misorientation angles. By means of 
first-principles calculations we address the thermodynamic properties of 
grain boundaries revealing energetically favorable large-angle 
configurations as well as dramatic stabilization of small-angle 
configurations via the out-of-plane deformation, a remarkable feature of 
graphene as a two-dimensional material [2]. Both the presence of stable 
large-angle grain-boundary motifs and the out-of-plane deformation of 
small-angle configurations have recently been observed by scanning 
tunneling microscopy [3]. 

In the rest of my talk, I will focus on the electronic transport properties of 
polycrystalline 2D materials. Ballistic charge-carrier transmission across 
periodic grain boundaries is governed primarily by momentum 
conservation. Two distinct transport behaviors of such grain boundaries in 
graphene are predicted − either perfect reflection or high transparency with 
respect to low-energy charge carriers depending on the grain boundary 
periodicity [4]. It is also shown that certain periodic line defect structures 
can be engineered and offer opportunities for generating valley polarized 
charge carriers [5]. Beyond the momentum conservation picture we find 
that the transmission of low-energy charge carriers can be dramatically 
suppressed in the small-angle limit [6]. Unlike graphene, TMDCs combine 
a two-valley electronic band structure with strong spin-orbit effects. The 

latter can be employed for creating spin-polarized currents and adds yet 
another conservation law in the electronic transport across regular defects 
such as the frequently observed inversion domain boundaries [7,8]. 

* This work has been supported by the Swiss NSF, ERC and Graphene 
Flagship. 

[1] O. V. Yazyev and Y. P. Chen, Nature Nanotechnology 9, 755 (2014). 

[2] O. V. Yazyev and S. G. Louie, Phys. Rev. B 81, 195420 (2010). 

[3] Y. Tison et al., Nano Lett. 14, 6382 (2014). 

[4] O. V. Yazyev and S. G. Louie, Nature Materials 9, 806 (2010). 

[5] J. H. Chen et al., Phys. Rev. B 89, 121407(R) (2014). 

[6] F. Gargiulo and O. V. Yazyev, Nano Lett. 14, 250 (2014). 

[7] A. Pulkin and O. V. Yazyev, submitted. 

[8] O. Lehtinen et al., ACS Nano 9, 3274 (2015). 

4:20pm  2D+EM+IS+MC+NS+SP+SS-WeA7  Defects Compensation 
and Refining Optical Luminescence in Organic/Transition Metal 
Dichalcogenide Heterostructure, J.H. Park, UC San Diego, A.M. Sanne, 
H.C.P. Movva, UT-Austin, S. Vishwanath, Cornell University, Il Jo Kwak, 
UC San Diego, H. Xing, Cornell University, J. Robertson, University of 
Cambridge, UK, S.K. Banerjee, UT-Austin, A.C. Kummel, UC San Diego 
Since layered transition-metal dichalcogenides(TMD) have demonstrated 
novel electronic and optoelectronic property, intense research has focused 
synthesis and integration into future electronic devices. Unlike graphene, 
TMD materials have band gaps, and these band structures can be tuned by 
thickness. However, in many cases, unintentional defects can be observed 
on TMD giving rise to the degradation of performance in the devices. Even 
for mechanical exfoliated TMD, there is a high density of defects, such as 
vacancies. For successful integration of TMD into devices, proper 
passivation of defects on TMD requires high stability in ambient conditions. 
In this study, a TiOPc monolayer was employed for passivation of defects 
to improve electrical and optical properties in TMD devices. Multilayer 
MoS2 flakes were cleaved in ambient condition and transferred into the 
UHV chamber; afterwards. TiOPc monolayers were deposited on the MoS2 
surfaces by organic molecular beam epitaxy. After deposition, TiOPc forms 
a monolayer with only few defects, and the TiOPc monolayer structure has 
square lattice in a 1.5x1.5 nm grid. This crystal structure indicates that each 
TiOPc in the monolayer is directed outward to vacuum. The deposited 
TiOPc layer has very high thermal stability on MoS2; the TiOPc layer on 
MoS2 requires annealing above of 673K for desorption. This high thermal 
stability indicates there are strong interaction between TiOPc and MoS2 
surface. STS shows the band gap of the monolayer is 1.8 eV, while bulk 
MoS2 has a 1.3eV band gap. Moreover, the Fermi level of TiOPc/bulk MoS2 
is shifted to the valence band, consistent with a P type shift. However, bulk 
MoS2 surface, where less than monolayer of TiOPc was deposited, has 
Fermi level shifted towards the conduction band, consistent with N type 
doping. In the single layer MoS2 deposited TiOPc monolayer, threshold bias 
is shifted from -30 V to near O V, indicating P-doping of MoS2. It can be 
hypothesized that the work function transition of MoS2 is changed as a 
function of thickness. Before deposition of the TiOPc monolayer, the 
defects peak corresponded to S vacancy is displayed at 1.7 eV in 
photoluminescence. Conversely, the deposition of TiOPc monolayer almost 
completely suppresses S vacancy peak located 1.7 eV. Moreover, in the 
single layer MoS2 FET, the on/off ratio is enhanced more than 2 orders 
magnitude. The similar charge transfer behavior also can be observed in 
TiOPc/WSe2; on the bilayer WSe2/HOPG, the TiOPc monolayer deposited 
on the first layer of WSe2 shows the a conduction band shifted Fermi level, 
while a TiOPc monolayer deposited on the second layer of WSe2 shows a 
valence band shifted Fermi level.  

4:40pm  2D+EM+IS+MC+NS+SP+SS-WeA8  Reactivity and 
Wettability of PVD Metals on 2D Transition Metal Dichalcogenides, 
Christopher Smyth, S. McDonnell, R. Addou, H. Zhu, C.L. Hinkle, R.M. 
Wallace, University of Texas at Dallas 
Transition metal dichalcogenides (TMDs) have been studied for years due 
to their tribological properties, but recent discoveries have illuminated 
unique opportunities for the use of single or few layer TMDs in electronics, 
specifically tunnel field effect transistors (TFETs). The properties of FETs 
fabricated with single and few layer TMDs have been investigated with 
some degree of success, but it has been shown via in-situ chemical analysis 
that interface interactions between certain contact metals and the underlying 
TMD are not fully understood1,2. 

In this study, the wettability and reactivity of various metals with a number 
of bulk TMDs (MoS2, HfSe2, SnSe2, etc.) were investigated. Multiple 
samples were processed in parallel to ensure that all sample sets saw 
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identical metal depositions. The metal-TMD interface was monitored in-situ 
using X-ray photoelectron spectroscopy (XPS) and metal film topography 
was imaged using atomic force microscopy (AFM). For some low work 
function metals, noticeable differences in interface chemistry were found 
between samples that saw high vacuum rather than UHV metal e-beam 
depositions. 

Significant variations in compatibility between contact metal and TMD 
were discovered. These variations were dependent upon the metal-TMD 
pair and the base pressure of the chamber prior to metal deposition. Au 
exhibits far superior wettability on MoSe2, where uniform thin films were 
achieved, compared to ReSe2, on which Au grows as clusters. Au 
wettability varies between that of thin films and clusters for the other TMDs 
studied. An Au thin film deposited on SnSe2 results in the formation of 
reaction products such as Sn metal, as evidenced by the evolution of 
different chemical states in the Sn 3d spectrum after deposition. Reactions 
between MoS2 and Sc producing Mo metal occur when Sc is deposited in 
UHV instead of HV. These results provide further understanding for the 
critical interface between Sc and TMD in high performance TFETs. 

This work was supported in part by NSF Award No. 1407765, the Center 
for Low Energy Systems Technology (LEAST), one of six centers 
supported by the STARnet phase of the Focus Center Research Program 
(FCRP), a Semiconductor Research Corporation program sponsored by 
MARCO and DARPA, and by the Southwest Academy on Nanoelectronics 
(SWAN) sponsored by the Nanoelectronic Research Initiative and NIST. 

[1] McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. 
Defect Dominated Doping and Contact Resistance in MoS2. ACS Nano 
2014, 8, 2880-2888. 

[2] Das, S.; Chen, H.Y.; Penumatcha, A. V.; Appenzeller, J. High 
Performance Multi-Layer MoS2 Transistors with Scandium Contacts. Nano 
Lett. 2012, 12, 100-105. 

5:00pm  2D+EM+IS+MC+NS+SP+SS-WeA9  Defects and Boundaries 
in 2D Materials: Correlating Electronic Properties to Atomic 
Structures, An-Ping Li, Oak Ridge National Laboratory INVITED 
The quest for novel two-dimensional (2D) materials has led to the discovery 
of hybrid heterostructures of graphene and other 2D atomic films, which 
provide us fascinating playground for exploring defects and boundaries in a 
variety of atomic layers. Even in graphene itself, there usually exist large 
amount of extended topological defects, such as grain boundaries and 
changes in layer thickness, which divide graphene into grains and domains. 
These interfaces and boundaries can break the lattice symmetry and are 
believed to have a major impact on the electronic properties, especially the 
transport, in 2D materials.  

Here, we report on the electronic and transport properties of two types of 
defects studied by STM and multi-probe scanning tunneling potentiometry 
with a focus on the correlations to their atomic structures. The first type of 
defect is the monolayer-bilayer (ML-BL) boundaries in epitaxial graphene 
on SiC. By measuring the transport spectroscopy across individual ML-BL 
graphene boundaries, a greater voltage drop is observed when the current 
flows from monolayer to bilayer graphene than in the reverse direction, 
displaying an asymmetric electron transport upon bias polarity reversal [1, 
2]. Interestingly, this asymmetry is not from a typical nonlinear 
conductance due to electron transmission through an asymmetric potential. 
Rather, it indicates the opening of an energy gap at the Fermi energy. 
Another type of defect is 1D interface in hexagonal boron nitride (hBN) and 
graphene planar heterostructures, where a polar-on-nonpolar 1D boundary 
is expected to possess peculiar electronic states associated with edge states 
of graphene and the polarity of hBN [2]. By implementing the concept of 
epitaxy to 2D space, we grow monolayer hBN from fresh edges of 
monolayer graphene with lattice coherence, forming a 1D boundary [3]. 
STM/STS measurements reveal an abrupt 1D zigzag oriented boundary, 
with boundary states about 0.6 eV below or above the Fermi level 
depending on the termination of the hBN at the boundary [4]. The boundary 
states are extended along the boundary, and exponentially decay into the 
bulk of graphene and hBN. The origin of boundary states and the effect of 
the polarity discontinuity at the interface will be discussed. 

This research was conducted at the Center for Nanophase Materials 
Sciences, which is DOE Office of Science User Facility. 

1 K. W. Clark, et al., ACS Nano7, 7956 (2013).  

2 K. W. Clark, et al., Phys. Rev. X4, 011021 (2014). 

3 L. Liu, et al., Science343, 163 (2014).  

4 J. Park et al., Nature Commun. 5, 5403 (2014). 

5:40pm  2D+EM+IS+MC+NS+SP+SS-WeA11  Metal Ion Intercalated 
2D Materials as Transparent Electrodes, Jiayu Wan*, W. Bao, F. Gu, 
University of Maryland, College Park, M. Fuhrer, Monash University, 
Malaysia, L. Hu, University of Maryland, College Park 
Transparent electrode materials are critical for optoelectronic devices such 
as touch screen and solar cells. Graphene has been widely studied as 
transparent electrodes for its unique physical properties. To further boost 
the performance of graphene based transparent electrodes, we novelized Li-
ion intercalation in graphene, and achieved highest performance of carbon 
based transparent electrodes.[1] Transmission as high as 91.7% with a sheet 
resistance of 3.0 ohm/sq is achieved for 19-layer LiC6, which corresponds 
to a figure of merit (Sigmadc/Sigmaopt) at 1,400, significantly higher than 
any other continuous transparent electrodes. The unconventional 
modification of ultrathin graphite optoelectronic properties is explained by 
the suppression of interband optical transitions and a small intraband Drude 
conductivity near the interband edge. To achieve low cost, large scale 
graphene-based transparent electrodes, we further developed Na-ion 
intercalated printed reduced graphene oxide (RGO) film[2]. Unlike pristine 
graphene that inhibits Na-ion intercalation, the larger layer-layer distance of 
RGO allows Na-ion intercalation, leading to simultaneously much higher 
DC conductivity and higher optical transmittance. The typical increase of 
transmittance from 36% to 79% and decrease of sheet resistance from 83 
kohms/sq to 311 ohms/sq in the printed network was observed after Na-ion 
intercalation. Compared with Li-intercalated graphene, Na-ion intercalated 
RGO shows much better environmental stability, which is likely due to the 
self-terminating oxidation of Na ions on the RGO edges. This study 
demonstrated the great potential of metal-ion intercalation to improve the 
performance of graphene-based materials for transparent conductor 
applications. 

Reference 

1. Jiayu Wana, Wenzhong Baoa, et al., Nature communications, 2014,5, 
4224. (a equally contribution) 

2. Jiayu Wan, Feng Gu, Wenzhong Bao, et al. Nano Letters, 2015, DOI: 
10.1021/acs.nanolett.5b00300. 

6:00pm  2D+EM+IS+MC+NS+SP+SS-WeA12  Oxygen Reduction 
Reaction on Nitrogen-doped Graphene, Jun Nakamura, The University 
of Electro-Communications (UEC-Tokyo), Japan, A. Ichikawa, H. 
Matsuyama, A. Akaishi, The University of Electro-Communications (UEC-
Tokyo) 
Recently, several groups have reported high oxygen reduction reaction 
(ORR) activities in nitrogen-doped carbon nanomaterials which are 
candidates of metal-free catalysts for ORR [1]. Lee et al. have successfully 
fabricated nitrogen-doped graphene with the high ORR activity in acid 
media [2]. It has been confirmed that local atomic configurations of dopants 
in nitrogen-doped graphene are classified into three functional groups 
(pyrrole-like, pyridine-like, and graphite-like configurations) [3,4]. 
However, the mechanism of the ORR on the nitrogen-doped graphene has 
not fully understood. 

In this work, we examine the ORR on the nitrogen-doped graphene 
containing the graphite-like N in a basal plane using first-principles 
calculations. In general, the ORR occurs mainly two pathways: The two-
electron pathway (2e-) that is reduced to hydrogen peroxide (H2O2), and 
the direct four-electron pathway (4e-) that reduces to water (H2O). 
Thermodynamic electrode potentials of each process at standard conditions 
are about 0.68V (2e-) and 1.23V (4e-), respectively. In case of the 
associative mechanism for the two- and four- electron reduction pathways, 
the electrocatalytic activity is governed by the stability of reaction 
intermediates like OOH*, OH*, and O* (where “*” refers to a surface site). 
Free energies of the reaction intermediates have been calculated based on 
the computational hydrogen electrode model suggested by Nørskov et al. 
[5]. We have taken account of effects of electrode potential, Ph of a 
solution, a local electric field in double layer, and water environment. 

We have constructed energy diagrams at several electrode potentials on the 
basis of the first-principles calculations. It has been shown that the 2e- and 
4e- reduction processes proceed at potentials up to about 0.5V and 0.8V, 
respectively. This means that we can control the reduction pathway for the 
nitrogen-doped graphene with the graphite-like N. Proton-electron transfer 
to OOH* (the 2e- pathway), and the formation of OOH* (the 4e- pathway) 
are confirmed to be the rate-limiting steps, respectively. Density 
dependence of N on the ORR activity will also be discussed in the 
presentation. 

References 

[1] J. Ozaki, N. Kimura, T. Anahara, and A. Oya, Carbon 45, 1847 (2007). 

[2] K. R. Lee et al., Electrochem. Commun. 12, 1052 (2010). 
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[3] H. Niwa et al., J. Power Sources 187, 93 (2009). 

[4] T. Umeki, A. Akaishi, A. Ichikawa, and J. Nakamura, J. Phys. Chem. C 
119, 6288 (2015). 

[5] J. K. Nørskov et al., J. Phys. Chem. B 108, 17886 (2004). 

Scanning Probe Microscopy Focus Topic 
Room: 212A - Session SP+2D+AS+NS+SS-WeA 

Probing Electronic and Transport Properties 
Moderator: Tae-Hwan Kim, Pohang University of Science 
and Technology, Jewook Park, Oak Ridge National 
Laboratory 

2:20pm  SP+2D+AS+NS+SS-WeA1  Geometric and Electronic 
Structures of Epitaxially Grown Pnictide 122, 111 and CuxBi2Se3 
Samples, Young Kuk, Seoul National University, Republic of Korea 
 INVITED 
Order parameters were measured mainly on low-temperature cleaved, 
superconductor surfaces from their measured topographic images (constant 
current maps) and Fourier-transformed, measured density of states (energy 
dependent dI/dV map) in previous scanning tunneling microscopy (STM) 
studies. However, no direct evidence of coupling mechanisms has been 
given for these high temperature superconductors by these STM studies. 
We intend to study how homogeneity of a doped sample influences the 
superconducting property in an STM study. We were able to grow pnictide 
111, 122, and CuxBi2Se3 samples by molecular beam epitaxy. We found that 
surfaces of these grown samples are often terminated by alkali or alkaline 
atomic plane or non-superconducting metallic planes. These surfaces reveal 
distorted superconducting or non-superconducting properties. We adopted 
various ways to expose the superconducting planes in these samples. At the 
same time, we tried to grow samples homogeneously doped over the 
coherence lengths. Nodal structures were observed on these samples in their 
quasiparticle interference patterns. In this talk we will discuss the properties 
of the s±, s, d states as likely candidates pairing states for these materials. 

3:00pm  SP+2D+AS+NS+SS-WeA3  Direct Measurement of 
Conductance from Topological Surface States in Topological 
Insulators, Corentin Durand, X. Zhang, S. Hus, M. McGuire, I. Vlassiouk, 
A.-P. Li, Oak Ridge National Laboratory 
Topological insulators (TI) with characteristic topological surface states 
(TSS) attract great interest for both fundamental physics and device 
applications. However, the unavoidable presence of defects in bulk single 
crystals usually dopes the material leading to a metallic behavior. Thus, the 
direct measurement of the TSS electronic transport properties is hard to 
achieve due to the dominant contribution from the bulk states. Here, we 
measure the transport properties of Bi2Se3 crystals by Four Probe Scanning 
Tunneling Microscopy (4P-STM) technique at different temperatures on 
fresh surfaces obtained by cleavage in Ultra-High Vacuum (UHV) (base 
pressure = 2x10-10 Torr). In contrast to conventional models that assume 
two resistors in parallel to count for both the TSS and bulk conductance 
channels, we show that this technique can be used to differentiate the 2D 
contribution of TSS to the transport from the 3D contribution (bulk) by 
considering the potential profiles across the interface. Our method allows 
quantitative determination of conductivities from both channels. We also 
compare our results with samples exhibiting pure 2D and 3D transport 
behaviors. Our results shows that our approach enables direct distinguishing 
and accessing electronic transport of TI surfaces surface states, which can 
be applied to the studies of 2D to 3D crossover of conductance in other 
complex systems.  

This research was conducted at the Center for Nanophase Materials 
Sciences, which is a DOE Office of Science User Facility. 

3:20pm  SP+2D+AS+NS+SS-WeA4  Chiral Edge States of Topological 
Insulator in 1D, Tae-Hwan Kim, Pohang University of Science and 
Technology, Republic of Korea, S. Cheon, S.-H. Lee, Institute for Basic 
Science, Republic of Korea, H.W. Yeom, Pohang University of Science and 
Technology and Institute for Basic Science, Republic of Korea 
Chiral edge states are one of the most fascinating hallmark of topological 
insulators [1-4]. While chiral edge states are the vitally important feature of 
2D and 3D topological insulators, no correspondence has yet been found in 
1D. On the other hand, in 1D, a Peierls-distorted atomic chain such as 
polyacetylene has two topologically different ground states and a 
topological edge state or so-called a topological soliton connecting between 
them [5,6]. The topological edge states in 1D show many interesting 
properties such as charge-spin separation, fractional charge, and so on [7,8]. 

However, they do not exhibit chirality as 2D or 3D topological insulators 
do. In this talk, we report that the 1D topological edge states, solitons, of the 
charge-density wave (CDW) system of indium atomic wires self-assembled 
on a silicon surface have the chiral property [9,10]. Our system can be well 
described by a coupled double Peierls-distorted atomic chain with zigzag 
interchain coupling, which induces dynamical sublattice symmetry 
breaking. This subtle change ensures a dynamically generated topological 
structure with four-fold symmetric ground states and has topological edge 
states with a new degree of freedom, chirality, which is absent in the case of 
a single Peierls atomic chain. We have performed scanning tunneling 
microscopy and spectroscopy in order to obtain experimental evidences of 
the chiral edge states in the 1D CDW. Individual right- and left-chiral edge 
states are directly identified from non-chiral ones, which are similar to the 
topological solitons found in a single Peierls atomic chain. Furthermore, we 
found that chiral edge states can produce quantized charge pumping across 
the chain that is topologically protected and controllable by their chirality. 
Thus, these topological chiral edge states or solitons can be utilized for 
future single-electron-level data storage devices or logic circuits, which are 
topologically protected. 

B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).  

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. 
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R. Jackiw, C. Rebbi, Phys. Rev. D 13, 3398 (1976).  

T. Giamarchi, Quantum Physics in One Dimension (Oxford University 
Press, Oxford : New York, 2004).  

T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, 
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T.-H. Kim, H. W. Yeom, Phys. Rev. Lett. 109, 246802 (2012).  
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4:20pm  SP+2D+AS+NS+SS-WeA7  Electronic Properties of Quasi-one-
dimensional Defects in Monolayer h-BN, Chuanxu Ma, J. Park, Oak 
Ridge National Laboratory, L. Liu, G. Gu, The University of Tennessee, 
A.P. Baddorf, A.-P. Li, Oak Ridge National Laboratory 
Two-dimensional (2D) hexagonal boron nitride (h-BN) monolayers have 
wide promising applications in nanoelectronics. The presence of defects 
could greatly impact its electronic properties. Here, we present experimental 
results about two types of line defects in h-BN monolayers, prepared on Cu 
foils by chemical vapor deposition (CVD) method.  

Using scanning tunneling microscopy/spectroscopy (STM/STS), the 
structural and electronic properties of two types of quasi-1D defects are 
characterized in monolayer h-BN. An energy gap ~4 Ev is observed for h-
BN monolayers on Cu foils. The first type of quasi-1D defects is the worm-
like defects with length 3~30 nm, and width ~1.5 nm. Nano-ripples with 
modulation λ ~ 5.2 Å, which is about double the size of h-BN lattice, are 
observed both from the topographic images and Di/Dv mappings along the 
worm-like defects. The modulation is in phase at negative bias and out of 
phase at positive bias between the topographic images and Di/Dv mappings. 
The defects also show higher tunneling conductance than the h-BN sheet in 
the Di/Dv mappings. The observed nano-ripples in the defects might 
indicate interesting electronic properties, such as charge density wave 
(CDW).  

The other type of defcts are the linear boundaries of h-BN. The tilting angle 
between the two domains at the both sides of the boundary is about 90°, 
which is well in line with our simulations. From the Di/Dv mapping, the 
boundary shows lower tunneling conductance than the h-BN sheet, which is 
different from the first type of quasi-1D defects.  

Our experimental results demonstrate that the existence of quasi-1D defects 
tramendously affect the structure and electronic properties of h-BN, thus 
could be used to tune the transport properties in h-BN-based nanodevices. 

This research was conducted at the Center for Nanophase Materials 
Sciences, which is a DOE Office of Science User Facility, and supported by 
the Laboratory Directed Research and Development Program of Oak Ridge 
National Laboratory, managed by UT-Battelle, LLC, for the US DOE. 

4:40pm  SP+2D+AS+NS+SS-WeA8  Real-Space Imaging of the Multiple 
Scattering in Single Layer Graphene: FT-STM/STS Studies, M. Jung, 
S.-D. Sohn, J. Park, K. Lee, Hyung-Joon Shin, Ulsan Natioanl Institute of 
Science and Technology, Republic of Korea 
The electrons in graphene exhibit unusual two-dimensional behaviors, 
which can be described by massless Dirac quasiparticles. In order to 
understand the fundamental electronic properties of graphene, extensive 
studies have been focused on graphene both experimentally and 
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theoretically. Undoubtedly, however, not only the electronic property of 
graphene itself but also that of graphene on metallic substrates is of great 
importance for the further applications. In this study we investigated the 
scattering behaviors of electrons in single layer graphene (SLG) on a 
Cu(111) substrate by means of low-temperature scanning tunneling 
microscopy (LT-STM) and scanning tunneling spectroscopy (STS). When 
there is a defect in graphene, we can observe the scattering of electrons in 
the form of interference pattern by STM. In previous STM studies, the 
energy level of Dirac point has been assigned by the position of a dip in 
dI/dV curve. It is very difficult, however, to determine the exact position of 
Dirac point from STS for the graphene on metallic substrates, because 
surface states of the substrate is too close to Dirac point of graphene in 
energy level. Here, we could successfully deconvolute and identify the 
electronic dispersion relations in graphene and in Cu(111) by applying 
Fourier transformation to one-dimensional and two-dimensional STS maps, 
which enables us to resolve surface states of Cu(111) and Dirac point of 
graphene respectively. We will also present our first observation of the 
defect-induced intravalley scattering, which has not been observed 
experimentally to date for SLG. Our results show that the careful 
examination of interference pattern can provide valuable information 
regarding intravalley, intervalley, and interband scatterings of electrons in 
graphene/Cu(111). 

5:00pm  SP+2D+AS+NS+SS-WeA9  Tunability of Single-Atom Electron 
Spin Relaxation Times and Their Characterization by Pump-Probe 
STM, William Paul, S. Baumann, IBM Research - Almaden, K. Yang, 
Chinese Academy of Sciences, N. Romming, University of Hamburg, 
Germany, T. Choi, C.P. Lutz, A. Heinrich, IBM Research - Almaden 
A single atomic spin constitutes the ultimate limit to the miniaturization of 
magnetic bits. Can the state of such a spin be made stable against the 
quantum mechanical tunneling of magnetization? The energy relaxation 
time, T1, of single spins on surfaces can be measured by spin-polarized 
pump-probe STM [1]. To date, the relaxation times reported for Fe-Cu 
dimers on Cu2N insulating films have been of the order ~100 ns [1]. A 
three-order-of-magnitude enhancement of lifetime, to ~200 µs, was recently 
demonstrated for Co on a single-monolayer of MgO [2]. This was 
accomplished by choosing a less conductive decoupling layer to 
electronically separate the atom from a metal substrate, along with the 
careful design of the symmetry of orbital states. Here, we report on the 
tailoring of the T1 lifetime of single Fe atoms on single- and multi- layer 
MgO films grown on Ag(001). We focus on the characterization of intrinsic 
lifetimes for the atom-substrate system which are independent of the STM 
tip used to probe them, that is, without influence of the nearby STM tip 
which can be a strong source of electronic de-excitation. We also report on 
new advances in pump-probe techniques which were necessary to carry out 
these measurements. These advances extend lifetime detection to the femto-
ampere and many-millisecond regimes demanded by the Fe on MgO 
system. 

[1] Loth et al., Science 329, 1628 (2010)  

[2] Rau et al., Science 344, 988 (2014). 

5:20pm  SP+2D+AS+NS+SS-WeA10  Imaging and Spectroscopy of 
Graphene Heterostructures, Brian LeRoy, University of Arizona 
 INVITED 
The ability to create arbitrary stacking configurations of layered two-
dimensional materials opens the way to the creation of designer band 
structures in these materials. Graphene on hexagonal boron nitride is an 
example of such a van der Waals heterostructure where the electronic 
properties of the composite material can be different from either individual 
material [1]. These van der Waals heterostructures can be formed using a 
wide variety of layered materials including from transition metal 
dichalcogenides, graphene and topological insulators. This talk will focus 
on devices consisting of graphene coupled to other layered materials. The 
lattice mismatch and twist angle between the layers produces a moiré 
pattern and affects their electronic properties. In double layer graphene 
systems, we find a van Hove singularity whose energy depends on the 
rotation angle [2]. This singularity in the density of states leads to a strong 
enhancement of the absorption at a particular wavelength. In graphene on 
transition metal dichalcogenides, the interaction between the materials leads 
to the possibility of commensurate stackings and the presence of new states 
in graphene [3]. 

[1] M. Yankowitz et al., Nature Physics 8, 382 (2012). 

[2] S. Huang et al., arXiv:1504.08357 (2015). 

[3] M. Yankowitz et al., Nano Letters 15, 1925 (2015). 

6:00pm  SP+2D+AS+NS+SS-WeA12  Correlated STM and Electron 
Transport Study of Individual Nanowires down to Atomic Scale, 
Shengyong Qin, University of Science and Technology of China, T.H. Kim, 
Oak Ridge National Laboratory, Y. Zhang, R. Wu, University of California, 
Irvine, H.H. Weitering, The University of Tennessee, Knoxville, C.K. Shih, 
The University of Texas at Austin, A.-P. Li, Oak Ridge National Laboratory 
The electronic conductance in quantum wires is often dictated by quantum 
instabilities and strong localization at the atomic scale. We present a novel 
nano-transport technique which combines local nano-contacts and four-
probe STM. The approach allows for correlated study of electron transport 
and scanning tunneling spectroscopy in individual nanowires. We first 
apply it to the GdSi2 quantum wires, which show that isolated nanowires 
exhibit a metal-insulator transition upon cooling, driven by the defect-
induced localizations, while wire bundles maintain a robust metallic state, 
stabilized by interwire electronic coupling. We then demonstrate 
applications of this transport technique with cabon nanotubes and copper 
wires in situ. The method bridges the gap between the transport and the 
local electronic and structural properties down to the atomic scale. 
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Scanning Probe Microscopy Focus Topic 
Room: 212A - Session SP+AS+NS+SS-ThM 

Probing Chemical Reactions at the Nanoscale 
Moderator: Stephen Nonnenmann, University of 
Massachusetts - Amherst, Shengyong Qin, University of 
Science and Technology of China 

8:40am  SP+AS+NS+SS-ThM3  Adsorption of Trimethyl Acetic Acid on 
(1x2) Reconstructed TiO2(110), Kenneth Park, K. Zhu, Y. Xia, Z. Zhang, 
Baylor University 
The adsorption of trimethyl acetic acid on (1x2) reconstructed TiO2(110) is 
investigated using scanning tunneling microscopy (STM) with the same 
area analysis. After de-protonation, trimethyl acetate (TMA) molecules 
preferentially adsorb in the troughs between two adjacent 1x2 strands. The 
nearest neighbor distance between TMA molecules is about 5.9 Å, twice the 
lattice constant along [001], corresponding to the bridging bidentate 
configuration over two 5-coordinated Ti4+ sites. With increasing coverage, 
they form linear chains, separated by (1x2) strands leading up to the 
nominal saturation coverage of 0.25 ML. Upon further adsorption, the 
second-layer of TMA molecules start clustering on top of 1x2 strands. The 
coverage-dependent TMA adsorption structures on (1x2) reconstructed 
TiO2(110) will be compared and discussed with the reported TMA 
adsorption on (1x1) TiO2(110), and relative reactivity of TMA with other 
defect sites including cross-links will be presented. 

9:00am  SP+AS+NS+SS-ThM4  Anticorrelation between Surface and 
Subsurface Point-Defects and Influence on Redox Chemistry at 
TiO2(110), Igor Lyubinetsky, Y. Yoon, Y. Du, Pacific Northwest National 
Laboratory, J.C. Garcia, Worcester Polytechnic Institute, Z. Zhu, Z.-T. 
Wang, N.G. Petrik, G.A. Kimmel, Z. Dohnalek, M.A. Henderson, R. 
Rousseau, Pacific Northwest National Laboratory, N.A. Deskins, Worcester 
Polytechnic Institute 
The atoms at the surface that constitute reactive sites clearly govern surface 
chemistry. But subsurface atoms, particularly substitutional and/or 
interstitial defects, can also influence surface chemistry, though a detailed 
understanding is still emerging. Here we report the interplay and relative 
impact of surface vs. subsurface defects on the surface chemistry of rutile 
TiO2, a prototypical metal oxide. Importantly, it contains both surface and 
subsurface intrinsic point-defects in the reduced state (along with residual 
extrinsic defects). Our scanning tunneling microscopy results show that O 
vacancies (VO’s), the dominant surface defects, are virtually absent in the 
vicinity of positively-charged subsurface point-defects. Such anticorrelation 
of defects is consistent with density functional theory (DFT) calculations of 
the impact of subsurface defect proximity on VO formation energy, which 
narrows down the possible candidates to certain interstitial defects, of both 
intrinsic and extrinsic nature. To monitor the influence of such (electron-
donor type) defects on surface redox chemistry, a test reaction of the 
electron-mediated dissociative adsorption of O2 is employed, which is 
observed to be suppressed around these defects. DFT results attribute this to 
a perceived absence of the intrinsic (Ti) (and likely extrinsic) interstitials in 
the nearest subsurface layer beneath “inhibited” areas, while the underlying 
energetic driver is largely repulsive electrostatics. Finally, we postulate that 
the entire subsurface region up to several atomic layers deep could be 
voided of any charged point-defects, whereas such defects are proposed to 
exist beyond the subsurface region. Subsequently, prevalent VO’s are largely 
responsible for both the surface/subsurface reduction and mediation of the 
redox chemistry at reduced TiO2(110) surface. Overall, this work provides 
new fundamental insights into the relation between surface and subsurface 
defects. In a broader perspective, the uncovered effects may prove to be 
general for other reducible oxides, and thus have potential implications in 
such diverse research fields as environmental remediation or 
microelectronics. 

9:20am  SP+AS+NS+SS-ThM5  Dissociation of Water on Oxygen Pre-
Covered Cu(110) Observed with Scanning Tunneling Microscopy, 
Zongqiang Pang, Lawrence Berkeley National Laboratory (LBNL) 
The dissociation of water on the oxygen pre-covered Cu(110) surface has 
been studied with Scanning Tunneling Microscopy (STM). At low 
temperature (77K), water reacts with pre-covered oxygen to produce 
hydrogen atoms and hydroxyl groups. Non-dissociated water molecules and 
hydroxyl groups combine to form a hexagonal network on the top of 
Cu(110) where water donates one hydrogen to the hydroxyl, while 
uncoordinated hydroxyls bind to the second layer intact water molecules. 
Following excitation by tunneling electron or by heat, the water molecules 

in the hexagonal network gradually dissociate. The oxygen atoms involved 
in the reaction of water dissociation return to its original position, leaving 
ordered Cu-O and hydroxyl dimer chains on the Cu(110) surface which 
both align along <001> direction. Our results demonstrate that the oxygen 
atoms pre-adsorbed on the Cu(110) surface lower the energy barrier for 
water dissociation on the Cu(110) surface. 

9:40am  SP+AS+NS+SS-ThM6  Probing Local Electrochemical Activity 
within Yttria-Stabilized-Zirconia via In Situ High-Temperature Atomic 
Force Microscopy, Jiaxin Zhu, University of Massachusetts - Amherst, C. 
Perez, T. Oh, R. Kungas, J. Vohs, D. Bonnell, University of Pennsylvania, 
S.S. Nonnenmann, University of Massachusetts - Amherst 
Considerable interest in understanding interfacial phenomena occurring 
across nanostructured solid oxide fuel cell (SOFC) membrane electrode 
assemblies has increased demand for in situ characterization techniques 
with higher resolution. We briefly outline recent advancements in atomic 
force microscopy (AFM) instrumentation and sub-systems in realizing real 
time imaging at high temperatures and ambient pressures, and the use of 
these in situ, multi-stimuli probes in collecting local information related to 
physical and fundamental processes. Here we demonstrate direct probing of 
local surface potential gradients related to the ionic conductivity of yttria-
stabilized zirconia (YSZ) within symmetric SOFCs under intermediate 
operating temperatures (500 °C – 600 °C) via variable temperature scanning 
surface potential microscopy (VT-SSPM). The conductivity values obtained 
at different temperatures are then used to estimate the activation energy. 
These locally collected conductivity and activation energy values are 
subsequently compared to macroscopic electrochemical impedance results 
and bulk literature values, thus supporting the validity of the approach. 
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Scanning Probe Microscopy Focus Topic 
Room: 212A - Session SP+BI+NS+SS+TF-ThA 

Probing Material Growth on the Surface 
Moderator: Chuanxu Ma, Oak Ridge National Laboratory 

2:20pm  SP+BI+NS+SS+TF-ThA1  Tailoring the Growth of Organic 
Thin Films via Chemical Reactions at the Molecular Scale, Pengpeng 
Zhang, Michigan State University INVITED 
Control of highly ordered organic molecular thin films with extended π 
systems is currently of intense interest for integrating molecules into 
modern electronics due to their tunable nature. Selection of molecules and 
substrates can lead to desired transport properties such as charge transfer, 
charge injection, exciton diffusion, etc., at the heterointerface, which is 
crucial to the development of organic and molecular electronics. However, 
achieving large-scale molecular ordering remains a significant challenge 
that requires a thorough understanding of the growth mechanism. I will 
discuss our recent discovery of the anisotropic crystalline step-flow growth 
of the prototypical metal phthalocyanine molecules on the deactivated 
Si(111)-B surface. I will then address the growth mechanism and show that 
the molecular ordering and molecular orientation can be effectively 
controlled through selective orbital coupling between the molecule and 
substrate. Finally, I will illustrate an abnormal temperature dependent 
growth evolution and discuss the associated mechanism.  

This research is funded by the U.S. Department of Energy (DOE) Office of 
Science Early Career Research Program (DE-SC0006400) through the 
Office of Basic Energy Sciences. 

3:00pm  SP+BI+NS+SS+TF-ThA3  Investigation of Initial Stages of 
Oxidation of Ni-Cr and Ni-Cr-Mo alloys by Scanning Tunneling 
Microscopy and Spectroscopy, Gopalakrishnan Ramalingam*, P. 
Reinke, University of Virginia 
Ni-Cr alloys are excellent candidates for use in highly corrosive 
environments due to the formation of a protective Cr2O3 layer. Molybdenum 
is a common alloying addition as it improves the resistance to localized 
corrosion and prevents the breakdown of the oxide layer. While the effect of 
Mo addition on corrosion resistance is well known, the underlying 
mechanisms at the atomic scale and the role of electronic structure changes 
due to Mo addition are poorly understood. In the current work, we have 
used STM/STS to investigate the initial stages of oxidation of Ni, Cr and 
Ni-Cr (10-25wt.% Cr) alloy thin films and subsequently, the effect of Mo 
addition (2-10 wt.%) on the oxidation behavior. The alloy thin films are 
grown on MgO(001) substrates using two recipes that yielded smooth films: 
(a) deposition at 100 °C and subsequent anneal at 300 °C for 2 hours, and 
(b) deposition at 400 °C with no post-growth annealing. While recipe (a) 
yielded smooth Ni films, co-deposition of Ni and Cr resulted in the 
formation of secondary Ni2Cr phases. Alloy films grown using recipe (b) 
did not result in secondary phases and are optimal for oxidation studies of 
alloy films. STM/STS data of the oxidation (30 L of O2) of a pure Ni thin 
film at 200 °C reveal preferential oxidation of some terraces compared to 
others and indicates a dependence of oxidation rate on the crystallographic 
orientation of the terrace. dI/dV maps of a Cr surface after 10 L oxidation at 
200 °C shows the presence of a bandgap (1.32 eV) throughout the surface 
and indicates the growth of a uniform oxide layer. In the case of Ni-
13wt.%Cr binary alloy, a 25 L exposure (at 1x10-8 mbar) at 300 °C results 
in a complete loss of step structure with a fully formed oxide layer as shown 
by STS spectra. A bandgap of 1.42 eV is observed throughout the surface 
and this value is less than the bulk bandgap of all possible oxide species 
(NiO, Cr2O3 or mixed). We will present the results of the initial stages of 
oxidation (<3 L) of the pure Ni thin films and discuss the differences in the 
oxidation processes due to the addition of 8-25 wt.% Cr. The progression 
from chemisorption regime (at low temperatures) to the oxide nucleation 
regime will be shown for different alloys by performing room temperature 
O2 exposures and post-exposure annealing cycles and the effect of alloying 
additions on this transition will be discussed. Preliminary data on the 
changes in the atomic and electronic structure of the thin film and oxidation 
behavior due to the addition of Mo will be presented. 

                                                 
* Morton S. Traum Award Finalist 

4:00pm  SP+BI+NS+SS+TF-ThA6  Growth and Properties of 
Skyrmionic Nanowires and Thin Film, Zheng Gai, Oak Ridge National 
Laboratory, J. Yi, S. Tang, University of Tennessee, Oak Ridge National 
Laboratory, D. Mandrus, University of Tennessee INVITED 
Magnetic skyrmion lattice, a vortex-like spin texture recently observed in 
chiral magnets, is of great interest to future spin-electronic data storage and 
other information technology applications. The combined effect of a large 
ferromagnetic exchange and a weak DM interaction is to twist the 
magnetization into a long-period spiral that can be tens to hundreds of 
nanometers in length. As these spirals are only weakly bound to the 
underlying lattice in cubic systems, they can be readily manipulated with 
modest applied fields. The skyrmion lattice in MnSi appears in a small 
region (known as the A phase) of the H-T phase diagram in bulk samples, 
but in 2D samples like thin films the skyrmion phase is much more robust. 
If skyrmion ordering can persist in one-dimensional MnSi nanowires and 
2D films, then these systems are very promising for spintronics applications 
as the magnetic domains and individual skymions could be manipulated 
with small currents. We have systematically explored the synthesis of single 
crystal MnSi nanowires via controlled oxide-assisted chemical vapor 
deposition and observed a characteristic signature of skyrmion magnetic 
ordering in MnSi nanowires. The SiO2 layer plays a key role for the high 
yield, correct stoichiometric and crystalline growth of the B20 MnSi 
nanowires. A growth phase diagram was constructed. For the thin films, an 
unique growth receipt was developed for the growth of high quality of thin 
films. The structure and magnetic properties of the films at different 
thickness were studied. 

4:40pm  SP+BI+NS+SS+TF-ThA8  Sulfur-induced Structural Motifs on 
Cu(111) and Au(111) Surfaces, Holly Walen‡, Iowa State University, D.-
J. Liu, Ames Laboratory, J. Oh, H. Lim, RIKEN, Japan, J.W. Evans, Iowa 
State University, C.M. Aikens, Kansas State University, Y. Kim, RIKEN, 
Japan, P.A. Thiel, Iowa State University 
The interaction of sulfur with copper and gold surfaces plays a fundamental 
role in important phenomena that include coarsening of surface 
nanostructures, and self-assembly of alkanethiols. Here, we identify and 
analyze unique sulfur-induced structural motifs observed on the (111) 
surfaces of these two metals. We choose very specific conditions: very low 
temperature (5 K), and very low sulfur coverage (≤ 0.05 monolayers, ML). 
In this region of temperature-coverage space, which has not been examined 
previously for these adsorbate-metal systems, the effects of individual 
interactions between metals and sulfur are most apparent and can be 
assessed extensively with the aid of theory and modeling. Furthermore, at 
this temperature diffusion is minimal and relatively-mobile species can be 
isolated. The primary technique is scanning tunneling microscopy (STM). 

On Cu(111), at 0.004 ML S, we find unexpected heart-shaped Cu2S3 
complexes on the terraces, made up of intersecting linear S-Cu-S units. 
With supporting density functional theory (DFT) and reaction-diffusion 
equation analysis, we propose that these hearts are a viable candidate for S-
enhanced mass transport of Cu on Cu(111) at higher temperature. As S 
coverage increases (up to 0.05 ML), a diverse group of Cu-S structures 
develops which includes concatenated hearts, and eventually the known 
(√43 x √43)R±7.5◦ reconstruction[1-2]. Analysis of the step edges of 
Cu(111) indicates that S decorates the step edges preferentially (relative to 
the terraces) and that the complexes observed on terraces originate at the 
step edges.  

In contrast, no metal-sulfur complexes are observed on Au(111) under 
similar conditions (0.03 ML). Instead, we observe striking √3R30◦ rows 
made up of S adatoms. Using DFT and ab-initio Monte Carlo analysis, we 
construct and test a lattice gas model. This analysis shows that these short 
rows of S adatoms form because of a complex set of through-metal 
interactions: a linear three-body attraction, as well as long-range pairwise 
interactions (up to 5a) between S atoms. 

These experimental observations for Cu(111) and Au(111) surfaces—made 
under essentially-identical conditions—together with extensive DFT 
analyses, allow comparisons and insights into factors that favor the 
existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on 
metal terraces. 

[1] E. Wahlström, I. Ekvall, H. Olin, S. A. Lindgren, and L. Wallden, Phys. 
Rev. B 60 10699 (1999). 

[2] E. Wahlström, I. Ekvall, T. Kihlgren, H. Olin, S. A. Lindgren, and L. 
Wallden, Phys. Rev. B 64 155406 (2001). 
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5:00pm  SP+BI+NS+SS+TF-ThA9  Surface Strain-Modulated Binding 
of Adsorbates on TiO2(110), D.V. Potapenko, Richard Osgood, Jr., 
Columbia University 
Mechanical elastic strain is commonly present in nanostructured materials 
and it has been found to change chemical and electronic properties in a 
broad range of solids. Systematic study of reactivity-strain relationship on 
surfaces is difficult because of the fact that only very low values of strain 
(~0.1%) are achievable through mechanical deformation of macroscopic 
samples. We have developed a method of preparation of nano-scale strain 
fields on TiO2 rutile(110) surface by low energy (1keV) Ar ion 
bombardments combined with specific thermal treatment. Titanium oxide is 
a brittle material regarded as a prototypical photocatalyst with numerous 
applications in the areas of solar energy utilization. Subsurface Ar clusters, 
which are formed through our preparation procedure, cause 5 – 25 nm wide 
surface deformations with the tensile strain values as high as 4 %. Surface 
distributions of various molecular and atomic adsorbates on TiO2(110) have 
been studied with atomically resolved STM imaging. Our results indicate 
significant strain-related variations in the surface binding properties. In this 
presentation we will concentrate on surface hydroxyl groups (OH) as a 
mobile adsorbate. We derive the O-H binding energy from the statistical 
analysis of the adsorbate distribution. Then we demonstrate a roughly linear 
relationship between the values of surface strain and the O-H binding 
energy. 

5:20pm  SP+BI+NS+SS+TF-ThA10  STM/STS Investigation of Organic 
Charge Transfer Complex TTF-TCNQ on Noble Metal Surfaces at 
4.3K, Seokmin Jeon, P. Doak, P. Ganesh, B. Sumpter, Oak Ridge National 
Laboratory, J.I. Cerda, Instituto de Ciencia de Materiales de Madrid, Spain, 
P. Maksymovych, Oak Ridge National Laboratory 
TTF-TCNQ (TTF = tetrathiafulvalene; TCNQ = 7,7,8,8-
tetracyanoquinodimethane) is a prototypical organic charge-transfer 
complex providing with a metallic conductivity (up to 900 ohm-1cm-1 at 
300K). It also represents a broad class of organic electronic compounds that 
exhibit strong electron correlations and a rich gamut of phase transitions 
involving charge ordering, Mott and Peierls metal-insulator transitions and 
superconductivity, etc. Despite decades of research in this area, quantitative 
understanding of this compound is still elusive and their low-dimensional 
form is barely explored. We investigated ultrathin films of TTF-TCNQ on 
silver surfaces using scanning tunneling microscopy/spectroscopy 
(STM/STS) at 4.3 K. TTF-TCNQ forms self-assembled molecular lattices 
on noble metal surfaces with a few different TTF-to-TCNQ ratios 
depending on evaporation condition. Among them the islands with 1 to 1 
stoichiometric ratio are found ubiquitously in less dependent on the 
evaporation condition. Structures of the monolayer islands are elucidated 
from sub-molecular resolution STM topography images. Single-point 
conductivity spectroscopy and conductivity mapping elucidate new 
electronic states which do not stem from their molecular orbital states are 
spatially located in the void areas of the TTF-TCNQ molecular lattices. We 
propose the sp-derived metal surface states are confined in the molecular 
lattices. Due to small periodicity of the lattice, the band minimum of the sp-
derived metal surface states is shifted by as much as 1eV. This shift is much 
more significant than the ones normally observed in organic self-
assemblies. As a result, we can also infer the height of the potential barrier 
within a 1D potential well model, which in turn is directly related to strong 
molecular dipole associated with large charge transfer and bent molecular 
geometry due to metal-molecule interactions. 

Acknowledgement: A portion of this research (SJ, PD, PG, BS, PM) was 
conducted at the Center for Nanophase Materials Sciences, which is a DOE 
Office of Science User Facility. 
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SP-ThP1  Extreme Magnetic Properties of Co Atoms on MgO Films, 
Christopher Lutz, S. Baumann, A. Heinrich, W. Paul, T. Choi, IBM 
Research - Almaden 
The magnetic moment of a free atom arises from the spin and orbital 
angular momentum. In a solid state environment, anisotropy in the orbital 
moment due to the ligand field, together with spin-orbit coupling, gives 
directionality and stability to the magnetization. Here we use a low-
temperature scanning tunneling microscope (STM) to show that Co atoms 
bound to O sites on a MgO layer achieve a record-high zero-field splitting 
of 58 meV, which closely approaches the theoretical limit given by the spin-
orbit coupling in a 3d transition metal atom. The zero-field splitting gives 
the energy of the first quantum step required to surmount the anisotropy 
barrier and reverse the magnetization. The combination of large moment 
and large anisotropy energy results in magnetic-state lifetimes exceeding 
0.2 ms. The high symmetry of the Co atom's binding site gives a ligand 
field that is effectively cylindrical, which yields a large axial anisotropy 
while preserving nearly all of the free-atom's orbital angular momentum. 
All-electrical pump-probe measurements reveal the large magentic moment 
(5.5 μB) directly in STM. These results provide a symmetry-based strategy 
for the design of stable nanomagnets. 

SP-ThP2  High Resolution qPlus NC-AFM with a New Cryogen-Free 
Variable Temperature UHV SPM, C. Troeppner, M. Atabak, S. Molitor, 
J. Koeble, Bjoern Piglosiewicz, J. Chrost, Oxford Instruments 
We present first qPlus[1] NC-AFM results of a new cryogen-free cooled 
ultra-high vacuum compatible scanning probe microscope capable of high 
stability STM and qPlus NC-AFM operation at temperatures ranging from 
low temperature up to above room temperature.  

The microscope features a cold-sample and cold-tip design. Overcoming the 
limits of hold time of cryogenic liquids by the cryogen-free approach this 
microscope provides access to new classes of experiments. Combining drift 
values much smaller than 1A/h and stable tip conditions enable e.g. 
unsurpassed long-term spectroscopic SPM measurements. 

Decoupling the strong mechanical vibrations induced by the pump of the 
closed cycle cooler represents a major technical challenge. Our design of 
the cryogen-free microscope effectively decouples the inherent mechanical 
vibrations to a level of state-of-the art low temperature SPM’s utilizing 
cryogenic liquids.  

References 

[1]] patented, cf. Franz J. Giessibl, APL, Vol. 73, No. 26 (1998) 

SP-ThP3  Surface Reconstruction for Accuracy Improvement in 
Nanoparticle Size Characterization, James Su, N.N. Chu, C.T. Lin, P.L. 
Chen, M.H. Shiao, C.N. Hsiao, F.Z. Chen, Instrument Technology Research 
Center, National Applied Research Laboratories, Taiwan, Republic of 
China 
In this study compares the analytical results of atomic force microscopy 
(AFM) and scanning electron microscopy (SEM) for characterizing size 
distributions of various nanoparticles in the size range of (10 – 300) nm. 
Polymer nanospheres, mixture of colloidal gold and GaN quantum dots 
were characterized by both techniques. Both techniques were recalibrated 
with transfer standards traceable to the international metrology institute 
PTB where the combined uncertainty of measurement results were less than 
1%. Average SEM values for mono-size dispersed particles of polymer and 
gold were slightly lower than the nominal values where AFM values were 
slightly higher on the contrary. Additional AFM deconvolution process has 
efficiently reduced the slight broadening of measurement results due to tip 
effects. Supported by comparisons to published data obtained on quantum 
dots of increasing diameters, the results show that the apparent size of 
small details appears to be larger than their actual dimension and the 
apparent distance between small objects may appear less than their actual 
dimension. The same method allows us to develop strategies to minimize the 
errors when the dimension of details is of less the order than the effective 
resolution of the operated SEM. Most of the size distributions were easily 
identified with AFM, and the modified average particle size for mono-size 
dispersed particles is in a good agreement with the nominal values. AFM 
characterization of nanoparticles using effective deconvolution process and 
statistical analysis software provides both accurate and rapid analysis for 
nanoparticle characterization. 

 

Thursday Evening Poster Sessions 



Friday Morning, October 23, 2015 22 

2D Materials Focus Topic 
Room: 212C - Session 2D+EM+IS+NS+PS+SP+SS-FrM 

Surface Chemistry of 2D Materials: Functionalization, 
Membranes, Sensors 
Moderator: Peter Sutter, University of Nebraska - Lincoln, 
Judy Cha, Yale University 

8:20am  2D+EM+IS+NS+PS+SP+SS-FrM1  Chemically Modifying 
Graphene for Surface Functionality, Paul Sheehan, S. Tsoi, S.C. 
Hernández, S.G. Walton, T.L. Reinecke, K.E. Whitener, J.T. Robinson, 
Naval Research Laboratory, R. Stine, Nova Research 
Graphene has many superlative properties that may be tailored for specific 
applications, or even enhanced, through chemical functionalization. 
Chemical functionalization dramatically changes almost every critical 
property of graphene, changing it from opaque to transparent, from 
diamagnetic to ferromagnetic, from electron rich or electron poor, from 
electrically conducting to insulating (and back again!). This extensive 
control suggests that chemically modified graphene may aid applications 
from flexible sensors to surface engineering. I will discuss how stacks of 2D 
materials can control the dominant surface forces—van der Waals,1 acid-
base interactions, electrostatic interactions, etc.—and so surpass 
conventional methods of preparing surfaces with, for example, self-
assembled monolayers. I will also briefly address goals as diverse as 
biosensing2 or sloughing off chemical warfare agents.3 
1 ACS Nano, 2014, 8 (12), pp 12410–12417 
2 BioTechniques, Vol. 57, No. 1, July 2014, pp. 21–30 
3 ACS Nano. 2013 Jun 25;7(6):4746-55. 

8:40am  2D+EM+IS+NS+PS+SP+SS-FrM2  Structural Phase Stability 
Control of Monolayer MoTe2 with Adsorbed Atoms and Molecules, Yao 
Zhou, E.J. Reed, Stanford University 
Of the Mo- and W- dichalcogenide monolayers, MoTe2 is particularly 
interesting because it exhibits a small energy difference (approximately 31 
meV per MoTe2) between its semiconducting 2H phase and metallic 1T’ 
crystal structures. This feature makes it particularly interesting for potential 
phase change applications.  

We study the adsorption of some common atoms and molecules onto 
monolayer MoTe2 and the potential for adsorption to induce a phase change 
between the semiconducting 2H and metallic 1T’ crystal structures of the 
monolayer. Using density functional theory with spin orbit and van der 
Waals energy contributions, we determined the most energetically favorable 
adsorption positions and orientations on the two phases of monolayer 
MoTe2. We then obtained the formation energies for these adsorption 
reactions and found that atomic adsorption generally favors 1T’ metallic 
phases while molecular adsorption favors semiconducting 2H phases. A 
possible application of this work may be the chemical stabilization of a 
preferred phase during the growth process. 

Further, we consider the MoxW1-xTe2 alloy monolayers that exhibit even 
smaller energy difference between phases. Our calculations indicate that it 
may be possible to engineer an alloy (0<x<0.5) such that specific molecules 
will induce a phase change to 1T’ while other molecules studied stabilize 
the 2H phase, which suggests that alloying may provide some molecular 
selectivity. This potentially provides the basis for molecular sensing 
applications due to the large electronic contrast between 2H and 1T’ phases. 

9:00am  2D+EM+IS+NS+PS+SP+SS-FrM3  Selective Nanochemistry on 
Graphene/Silicon Carbide: Substrate Functionalization and Polycyclic 
Aromatic Hydrocarbons Formation, Patrick Soukiassian, CEA, France 
 INVITED 
Graphene & silicon carbide (SiC) are advanced semiconductors having 
figures of merit scaling well above those of well-established ones [1,2]. 
Understanding/mediating SiC and graphene surfaces & interfaces properties 
are of central importance toward functionalization and applications. As a 
2D material, graphene is a single atomic layer of carbon atoms in a sp2 
bonding configuration. Therefore, functionalization remains challenging 
since interacting too strongly with the graphene atomic layer may change its 
bonding configuration and properties. Instead, interacting with the SiC 
substrate offers an alternative approach. The 1st case of hydrogen-induced 
metallization of a semiconductor surface has been shown for a 3C-SiC(001) 
surface [3]. Here, combining investigations using advanced experimental 
techniques such as STM/STS, vibrational & 3rd generation synchrotron 
radiation-based photoelectron spectroscopies together with state-of-art 

calculations will be presented and discussed. It includes: i) the 1st evidence 
of H/D-induced nanotunnel opening at a semiconductor sub-surface shown 
here for SiC [4]. Depending on H coverage, these nanotunnels could either 
be metallic or semiconducting. Dangling bonds generated inside the 
nanotunnels offer a promising template to capture atoms or molecules. 
These features open nano-tailoring capabilities towards advanced 
applications in electronics, chemistry, storage, sensors or biotechnology. 
Understanding & controlling such a mechanism open routes towards 
selective surface/interface functionalization of epitaxial graphene [4]. ii) 
The role of H interaction with graphene on SiC dust grains in polycyclic 
aromatic hydrocarbons (PAH) formation in the interstellar space with a 
possible route toward prebiotic roots of life in the universe [5].  

1–W. Lu, P. Soukiassian, J. Boeckl “Graphene: fundamentals and 
functionalities” MRS Bull. 37, 1119 (2012)  

2–P. Soukiassian “Will graphene be the material of the 21th century?” 
MRS Bull. 37, 1321 (2012) 

3-V. Derycke, P. Soukiassian, F. Amy, Y.J Chabal, M. D’angelo, H. 
Enriquez, M. Silly, “Nanochemistry at the atomic scale revealed in 
hydrogen-induced semiconductor surface metallization”, Nature Mat.2, 
253 (2003) 

4–P. Soukiassian, E. Wimmer, E. Celasco, Cl. Giallombardo, S. Bonanni, L. 
Vattuone, L. Savio, A. Tejeda, M. Silly, M. D’angelo, F. Sirotti, M. Rocca 
“Hydrogen-induced nanotunnel opening within semiconductor subsurface” 
Nature Com. 4, 2800 (2013) 

5–P. Merino, M. Švec, J.I. Martinez,P. Jelinek, P. Lacovig, M. Dalmiglio, 
S. Lizzit, P. Soukiassian, J. Cernicharo, J.A. Martin-Gago “Graphene 
etching on SiC grains as a path to interstellar PAHs’ formation” Nature 
Com. 5, 3054 (2014) 

9:40am  2D+EM+IS+NS+PS+SP+SS-FrM5  Intrinsic Wettability of 
Graphene, Haitao Liu, Department of Chemistry, University of Pittsburgh 
Graphene and graphite are long believed to be hydrophobic. Here we show 
that a clean graphitic surface is in fact mildly hydrophilic [1]. We find that 
an as-prepared graphene sample is hydrophilic with a water contact angle of 
ca. 40o. Upon exposure to ambient air, the water contact angle gradually 
increased to ca. 60o within 20 min and plateaued at ca. 80o after 1 day. 
Infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) 
showed that airborne hydrocarbon adsorbed onto the graphene surface 
during this process. Both thermal annealing and controlled UV/O3 treatment 
removed the hydrocarbon contaminants, which was accompanied by a 
concurrent decrease in the water contact angle. Our findings show that 
graphene is more hydrophilic than previously believed and suggest that the 
reported hydrophobic nature of graphene is due to unintentional 
hydrocarbon contamination from ambient air.  

Reference 

[1] Zhiting Li; et al.; Nature Materials, 12, 925-931, (2013)  

10:00am  2D+EM+IS+NS+PS+SP+SS-FrM6  Au-doped Graphene As a 
Promising Electrocatalyst for the Oxygen Reduction Reaction in 
Hydrogen Fuel Cells: Prediction from First Principles, Sergey Stolbov, 
University of Central Florida, M. Alcantara Ortigoza, Tuskegee University 
One of the main obstacles hindering large scale practical application of 
hydrogen fuel cells is a prohibited cost of the Pt (or Pt-based) catalysts for 
the oxygen reduction reaction (ORR) on the fuel cell cathode. In this work, 
we consider Au-doped graphene as an alternative to Pt for facilitating ORR. 
Our first-principles calculations show that Au atoms incorporated into 
graphene di-vacancies form a thermodynamically and electrochemically 
stable structure. Furthermore, calculation of the binding energies of the 
ORR intermediates reveals that Au-C bonding makes the C atoms 
neighboring to Au optimally reactive for ORR. The calculated ORR free 
energy diagrams suggest that the Au-graphene structures have an ORR 
onset potential as high as that of Pt. We also demonstrate that the linear 
relation among the binding energy of the reaction intermediates assumed in 
a number of works on computational high-throughput material screening 
does not hold, at least for this none purely transition-metal material.  

10:20am  2D+EM+IS+NS+PS+SP+SS-FrM7  Spontaneous Deposition of 
Palladium Nanoparticles on Graphene through Redox Reaction, 
Xiaorui Zhang, W. Ooki, Y.R. Kosaka, T. Kondo, J. Nakamura, University 
of Tsukuba, Japan 
Due to its unique properties such as huge surface area and excellent 
conductivity, graphene becomes great interesting for supporting noble metal 
catalysts. Some noble metals such as palladium, platinum, gold 
nanoparticles was reported to be able to spontaneous deposition on as-
synthesized reduced graphene oxide with external reducing agent-free 
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recently. Yet the mechanism of spontaneous deposition of metals on 
graphene has not been clarified until now. In the present research, we 
spontaneously deposited palladium nanoparticles on as-synthesized reduced 
graphene oxide in H2O medium without external reducing agent. It was 
found that the deposited amount of palladium varied with pH, meanwhile, 
the bivalent Pd2+ precursor was reduced to metallic palladium, and graphene 
was oxidized simultaneously with an increasing of its oxygen functional 
groups. The atomic ratio of the deposited Pd and the increased O in rGO 
located in a range from 1 to 2. As reducing agent-free, the mechanism on 
spontaneous redox deposition of metal nanoparticles on graphene was 
proposed, firstly, an efficient adsorption of metal precursor on graphene is a 
prerequisite which is determined by their electrical charges and adjusted by 
pH. Secondly, a positive galvanic potential between metal precursor and 
graphene is necessary for metal spontaneous deposition. 

10:40am  2D+EM+IS+NS+PS+SP+SS-FrM8  Gradient Electrochemical 
Response of Template Synthesized Thickness Sorted MoS2 Nanosheets 
for Cellular Level Free Radical Detection, Ankur Gupta, T. Selvan, S. 
Das, S. Seal, University of Central Florida 
The human body is a complex system capable of defending in adverse 
conditions. A classic example of such complex process is balanced 
equilibrium production between pro-oxidant and antioxidant in cells. 
However, when this equilibrium is disturbed, production of free radicals 
such as superoxide and nitric oxide strengthen, and causes serious cellular 
damages. Furthermore, myeloperoxidase (MPO) is released during the 
oxidative burst. This MPO combines with hydrogen peroxide (H2O2) and 
Cl- and generate hypochlorous acid (HOCl). This is a short-lived and 
powerful diffusible oxidant strong oxidizer and could react with O2- to 
produce OH·. Therefore, in physiological condition HOCl has a major role 
as a potent microbicidal agent in the immune defense; however, during the 
oxidative burst HOCl not only damage healthy tissue and generate radicals 
that are extremely reactive. Therefore, monitoring of the production of free 
radicals at the cellular level is important for diagnostic purpose. Over past 
years, several material have been used to develop sensors for free radical 
detection such as cerium oxide nanoparticles, MoS2 nanosheets and 
nanoparticles. However, detection of free radicals at cellular level is still a 
challenge.  

In this attempt, layered molybdenum disulfide (MoS2) were synthesized via 
hydrothermal method. SBA-15 polymer template were utilized during 
hydrothermal process to grow MoS2 around it to develop porosity. After the 
hydrothermal synthesis and washing, polymer template was removed by 
dissolving it in isopropanol which leaves high surface area layered MoS2 
crystal. Wet chemical exfoliation of MoS2 were carried out in aqueous 
solution of PluronicÒ F-127 having hydrophobic and hydrophilic chains. 
PluronicÒ F-127 was used to bring down the buoyant density of MoS2. Non-
templated nanosheets were synthesized as control. The exfoliated solution 
were centrifuged at 3000 rpm to remove large particle and supernatant was 
collected for density gradient ultracentrifugation (DGU). Separation of 
different thickness layers is carried out by DGU. Thickness sort MoS2 
nanosheets were characterized using AFM, XPS, HRTEM, Raman and UV-
Vis spectroscopy for structural and chemical analysis. XPS, HETEM and 
EFTEM analysis of nanosheets have illustrate the sulfur deficiency at the 
edges of the nanosheets. MoS2 nanosheets were deposited on glassy carbon 
electrode for cyclic-voltammetry and chronoamperometry measurements. 
Higher sensitivity and repeatability were demonstrated by nanosheets 
prepared via template method as compared to control for reactive oxygen 
and nitrogen species, and HOCl.  

11:00am  2D+EM+IS+NS+PS+SP+SS-FrM9  Methanol Synthesis on 
Defect-Laden Single-Layer MoS2 Supported on Cu(111): Results of a 
First Principles Study, D. Le, Takat B. Rawal, T.S. Rahman, University of 
Central Florida 
Despite being found to be the preferred structure in single layer MoS2, the 
sulfur vacancy row does not facilitate alcohol synthesis from syngas [1] 
because its narrow size limits adsorption, diffusion, and formation of 
possible intermediates. On the Cu(111) surface, strong interactions between 
MoS2 and Cu are expected to reduce the corrugations caused by sulfur 
vacancy rows, resulting in a larger exposure of vacancies to adsorbates 
which could enhance the catalytic activity of the row towards alcohol 
synthesis from syngas. Based on the results of our density functional theory 
(DFT) simulations utilizing the DFT-D3 correction for accounting the van 
der Waals interactions, we show that: (1) there is a significant charge 
transfer from the Cu(111) surface to MoS2, enhancing its catalytic 
properties, (2) the binding energies of CO and dissociated H2 increase by 
0.3 eV in comparison to that on unsupported MoS2, indicating stronger 
interactions, and (3) the barriers for forming intermediate species in alcohol 
synthesis process reduce significantly in comparison to that on unsupported 
MoS2. On the basis of these energetics, we conclude the Cu(111) substrate 
promotes methanol synthesis from syn gas on single-layer MoS2 with a 
vacancy row. We will also present the energetic pathways for the 

formations of other reaction products such as methane, formaldehyde, and 
water, as well as that of (the reverse) water gas-shift reaction. 

[1] D. Le, T. B. Rawal, and T. S. Rahman, J. Phys. Chem. C118, 5346 
(2014). 

*This work is supported in part by the U.S. Department of Energy under 
grant DE-FG02-07ER15842 

11:20am  2D+EM+IS+NS+PS+SP+SS-FrM10  The Happy Marriage of 
Graphene and Germanium: Graphene Achieves Exceptional 
Conductivity and Protects Germanium from Oxidizing, Richard Rojas 
Delgado, University of Wisconsin-Madison, F. Cavallo, University of New 
Mexico, R.M. Jacobberger, J.R. Sanchez Perez, D. Schroeder, M.A. 
Eriksson, M.S. Arnold, M.G. Lagally, University of Wisconsin-Madison 
The properties of graphene (G) make it an outstanding candidate for 
electronic-device applications, especially those that require no band gap but 
a high conductance. The conductance, involving both carrier mobility and 
carrier concentration, will depend critically on the substrate to which G is 
transferred. We demonstrate an exceptionally high conductance for G 
transferred to Ge(001) and provide an understanding of the mechanism.[1] 
Essential in this understanding is an interfacial chemistry consisting of Ge 
oxide and suboxide layers that provide the necessary charges to dope the 
graphene sheet, and whose chemical behavior is such that one can obtain 
long-term stability in the conductance. In contrast, when high-quality G is 
grown directly on Ge (100), (111), or (110), the conductance is 
unexceptional, but oxidation of the surface is significantly delayed and 
slowed, relative to both clean Ge and Ge with G transferred to its surface . 
[2,3] We fabricate Hall bars in G transferred to Ge and G grown using 
atmospheric-pressure CVD with methane precursors . X-ray photoelectron 
spectroscopy (XPS) is used to investigate the oxide in all stages of the 
measurements. The sheet resistance and Hall effect are measured from 
300K to 10K for transferred and grown samples. Values of mobility and 
carrier concentration are extracted. It appears we have reached the highest 
combination of mobility and carrier concentration in graphene (suspended 
or supported) for temperatures from 10 to 300K. The implication is that the 
primary mechanisms for scattering charge in the G, roughness and a non-
uniform electrostatic potential due to fixed charges, have limited effect 
when the substrate is oxidized Ge. Finally the subsequent oxidation kinetics 
of Ge (001) are compared for graphene directly grown on Ge and for 
graphene transferred to Ge. XPS shows that for graphene grown on Ge(001) 
the interface is oxide-free and remains so over long periods of time. For 
graphene transferred to Ge(001) the interface contains stoichiometric and 
substoichiometric oxides. The thickness of these oxides increases with time, 
but quite slowly. Using spatially resolved XPS, we propose a model of 
diffusion limited oxidation initiated at edges of the graphene.  

Research supported by DOE. 

[1]Cavallo, Francesca, et al. "Exceptional Charge Transport Properties of 
Graphene on Germanium." ACS nano 8.10 (2014): 10237-10245. 

[2] R. M. Jacobberger, et al. "Oriented Bottom-Up Growth of Armchair 
Graphene Nanoribbons on Germanium." Nature Comm., under review. 

[3] R. Rojas, et. al "Passivation of Ge by Graphene.", in process. 

Scanning Probe Microscopy Focus Topic 
Room: 212A - Session SP+AS+MI+NS+SS-FrM 

Probe-Sample Interactions 
Moderator: Carl Ventrice, Jr., SUNY Polytechnic Institute 

8:20am  SP+AS+MI+NS+SS-FrM1  Direct Visualization of 
Magnetoelectric Domains in Hexagonal Manganites, Weida Wu, Rutgers 
University INVITED 
Multiferroics are materials with coexisting magnetic and ferroelectric 
orders, where the cross‐coupling between two ferroic orders can result in 
strong magnetoelectriceffects [1‐4]. Therefore, it is of both fundamental and 
technological interest to visualize cross‐coupled magnetoelectric domains 
and domain walls in multiferroics. Recently, intriguing topological defects 
with six interlocked structural antiphase and ferroelectric domains merging 
into a vortex core were revealed in multiferroic hexagonal REMnO3 (R=rare 
earths) [5, 6]. Many emergent phenomena, such as enhanced conduction 
and unusual piezoelectric response, were observed in charged ferroelectric 
domain walls protected by these topological defects [7‐9]. More 
interestingly, alternating uncompensated magnetic moments were 
discovered at coupled structural antiphase and ferroelectric domain walls in 
hexagonal manganites using cryogenic magnetic force microscopy (MFM) 
[10], which demonstrates the cross‐coupling between ferroelectric and 
magnetic orders. Here we present the application of a magnetoelectric force 
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microscopy (MeFM) technique that combines MFM with in situ modulating 
high electric fields. This new microscopy technique allows us to image the 
magnetoelectric response of the domain patterns in hexagonal manganites 
directly [11, 12]. We find that this response changes sign at each structural 
domain wall, a result that is corroborated by symmetry analysis and 
phenomenological modelling , and provides compelling evidence for a 
lattice-mediated magnetoelectric coupling. The direct visualization of 
magnetoelectric domains at mesoscopic scales opens up explorations of 
emergent phenomena in multifunctional materials with multiple coupled 
orders. 

References 

[1] N. A. Spaldin, and M. Fiebig, Science 309, 391 (2005). 

[2] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006). 

[3] S‐W. Cheong, and M. Mostovoy, Nat. Mater. 6, 13 (2007). 

[4] N. A. Spaldin, S.‐W. Cheong, and R. Ramesh, in Physics Today2010), 
pp. 38. 

[5] T. Choi et al., Nature Materials 9, 253 (2010). 

[6] T. Jungk et al., Appl. Phys. Lett. 97, 012904 (2010). 

[7] E.B. Lochocki et al., Appl. Phys. Lett. 99, 232901 (2011). 

[8] D. Meier et al., Nat. Mater. 11, 284 (2012). 

[9] W. Wu et al., Phys. Rev. Lett. 108, 077203 (2012). 

[10] Y. Geng et al., Nano Letters 12, 6055?6059 (2012). 

[11] Y. Geng, and W. Wu, Rev. Sci. Instrum. 85, 053901 (2014). 

[12] Y. Geng et al., Nat. Mater. 13, 163 (2014). 

9:00am  SP+AS+MI+NS+SS-FrM3  Kelvin Probe Force Microscopy 
Studies of Magnetic Atoms on Ultrathin Insulating MgO Film, 
Taeyoung Choi, W. Paul, S. Baumann, C.P. Lutz, A. Heinrich, IBM 
Almaden Research Center 
The interplay of single atoms and their local environment on surfaces 
influences the atoms’ spin excitations and dynamics, which can be utilized 
in progress toward atomic-scale memory and quantum information 
processing. We find that spin-excitation energy of Fe atoms on an insulating 
MgO film shifts depending on the tip-to-atom separation. This may be 
attributed to the electric field across the tunneling junction, as well as to 
local charge and structural changes around the atom. The Kelvin Probe 
Force Microscopy (KPFM) has been very useful tool to measure changes of 
local contact potential differences between a tip and a sample at the atomic 
level [1]. In this talk, we employ tuning fork KPFM/STM and show 
preliminary results on the charge character and spin excitations of Fe atoms.  

This work is supported by grants from IBM. 

[1] Leo Gross et al., Phys. Rev. B 90, 155455 (2014).  

9:20am  SP+AS+MI+NS+SS-FrM4  Nanoscale Schottky Barrier Height 
Mapping Utilizing Ballistic Electron Emission Microscopy, C. Durcan, 
W. Nolting, College of Nanoscale Science and Engineering, Vincent 
LaBella, SUNY Polytechnic Institute 
The Schottky barrier is the electrostatic barrier between a metal and a 
semiconductor that results in rectification and is found in many types of 
devices such as source drain contacts to sub 20-nm-node transistors. 
Naturally, the Schottky barrier height can fluctuate across the interface due 
to variations in bonding, compositional fluctuations in the materials, and the 
presence of defects. However measuring and mapping these electrostatic 
fluctuations is impossible with bulk IV or CV techniques. This presentation 
will demonstrate how the Schottky barrier height can be mapped to 
nanoscale dimensions using an STM based technique called ballistic 
electron emission microscopy (BEEM). The STM tip is positioned on a 
regularly spaced grid and BEEM spectra are acquired from which the 
barrier height can be extracted. A map and histogram is then generated by 
measuring and fitting thousands of these spectra. These maps provide 
detailed insight into the electrostatic fluctuations occurring at the buried 
interface with nanoscale resolution that cannot be accomplished with other 
bulk measurements. 

9:40am  SP+AS+MI+NS+SS-FrM5  Electron Transport Studies of 
Metal Films Utilizing Ballistic Electron Emission Microscopy, 
Christopher Durcan, SUNY College of Nanoscale Science and 
Engineering, V. LaBella, SUNY Polytechnic Institute 
Understanding scattering of electrons in nanometer thick metal films is of 
fundamental and technological importance. One method to study electron 
scattering is with ballistic electron emission microscopy (BEEM), which is 
a three terminal STM based technique that measures both scattering through 
a metal film and the Schottky barrier height for metal-semiconductor 
junctions with both nanometer spatial resolution and meV energy 
resolution. This presentation will describe our work at understanding the 

relationship between the metal resistivity and the electron scattering lengths 
measured with BEEM by exploring metals with a range of resistivities from 
Ag (1.7 µΩ-cm) to Cr (12.6 µΩ-cm). In addition, nanoscale mapping of the 
Schottky barrier height of these metals to silicon will also be presented to 
understand the spatial uniformity of the transport. 

10:00am  SP+AS+MI+NS+SS-FrM6  Utilizing Ballistic Electron 
Emission Microscopy to Study Sidewall Scattering of Electrons, Westly 
Nolting, C. Durcan, R. Balsano, College of Nanoscale Science and 
Engineering, University of Albany, V. LaBella, College of Nanoscale 
Science and Engineering, SUNY Polytechnic Institute 
Sidewall scattering of electrons within aggressively scaled metallic 
interconnects increases the resistance since the mean free path (~40 nm) is 
larger than the dimensions of the material. One method to study hot-
electron scattering in nm-thick metallic films is Ballistic Electron Emission 
Microscopy (BEEM), which is an STM based technique. In this work, we 
perform BEEM scattering measurements on lithographically patterned fin 
structures with a Schottky diode interface to determine its ability to measure 
sidewall scattering. This is accomplished by acquiring BEEM spectra on a 
regularly spaced grid and fitting the results to determine both the Schottky 
barrier height and the slope of the spectra. The slope of the spectra is related 
to the scattering in the film and interface. The position of fin structures are 
then determined by mapping both the Schottky height and slope over a 
square micron to observe scattering at the interface caused by the patterned 
structures. The poster will discuss the fabrication of the patterned 50-nm-
pitched sidewall structures that are used for mapping the sidewall scattering. 
In addition, it will present the preliminary BEEM measurements on these 
structures. 

10:20am  SP+AS+MI+NS+SS-FrM7  Progress in Nanoscale Magnetic 
Resonance Imaging, Daniel Rugar, IBM Research Division INVITED 
Nuclear magnetic resonance (NMR) is the basis of powerful spectroscopic 
and imaging techniques, but extension to nanoscale samples has been a 
longstanding challenge due to the insensitivity of conventional detection 
methods. We are exploring the use of individual, near-surface nitrogen-
vacancy (NV) centers in diamond as atomic-size magnetometers to detect 
proton NMR in organic material located external to the diamond. Using a 
combination of electron spin echoes and proton spin manipulation, the NV 
center senses the nanotesla field fluctuations from the protons, enabling 
both time-domain and spectroscopic NMR measurements on the nanometer 
scale. By scanning a small polymer test object past a near-surface NV 
center, we have recently demonstrated proton magnetic resonance imaging 
(MRI) with spatial resolution on the order of 10 nm.  

One key issue in NV-NMR experiments is the loss of spin coherence when 
the NV center is located near the diamond surface. Although this loss of 
coherence is frequently attributed to the effect of magnetic noise emanating 
from unpaired spins on the diamond surface, we will show evidence that 
electric field noise from fluctuating surface charge may be the dominant 
factor. 

Work performed in collaboration with M. Kim, H. J. Mamin, M. H. 
Sherwood, C. T. Rettner, K. Ohno, and D. D. Awschalom 

11:00am  SP+AS+MI+NS+SS-FrM9  Reactive Intermediates Created 
and Analyzed by Scanning Probe Microscopy, Bruno Schuler, IBM 
Research - Zurich, Switzerland, N. Pavliček, IBM Research - Zurich, S. 
Collazos, CIQUS, Universidade de Santiago de Compostela, N. Moll, S. 
Fatayer, IBM Research - Zurich, D. Pérez, E. Guitán, CIQUS, 
Universidade de Santiago de Compostela, G. Meyer, IBM Research - 
Zurich, D. Peña, CIQUS, Universidade de Santiago de Compostela, L. 
Gross, IBM Research - Zurich 
Reactive intermediates are involved in most chemical transformations. 
However, their characterization is a great challenge because of their short 
lifetime and high reactivity. 

Here we report on the creation of single radicals and diradicals on a thin 
insulating surface by means of atomic manipulation. Importantly, the thin 
insulating film facilitates the stabilization of these reactive intermediates at 
cryogenic temperatures. The molecules were characterized by atomic-
resolution atomic force microscopy (AFM) imaging with a CO 
functionalized tip [1] and scanning tunneling microscopy (STM) orbital 
imaging [2]. We show that the molecules’ reactivity is preserved even at 
low temperatures by performing different on-surface reactions by atomic 
manipulation. As an example, the generation of aryne is discussed, a very 
reactive intermediate caught for the first time [3].  

References: 

[1] L. Gross et al. Science 325, 1110 (2009) 

[2] J. Repp et al. Phys. Rev. Lett. 94, 026803 (2005) 



 25 Friday Morning, October 23, 2015 

[3] N. Pavliček et al. On-surface generation and imaging of arynes by 
atomic force microscopy. (submitted) 

11:20am  SP+AS+MI+NS+SS-FrM10  The Negative Stiffness and 
Positive Damping of Squeezed Air in Dynamic Atomic Force 
Microscopy, x. Yu, M. Tao, Nancy Burnham, Worcester Polytechnic 
Institute 
By oscillating a micro-sized cantilever beam at a certain frequency and 
observing its interaction with the sample surface, dynamic mode atomic 
force microscopy (AFM) has gained attention for characterizing mechanical 
properties of a variety of materials at the micro and nano scales. The thin air 
film, confined between the oscillating cantilever beam and the stationary 
sample surface, causes the so-called “squeeze-film effect” when the gap 
between the two boundaries is less than a hundred microns. Although 
studies have shown that the squeeze film can act as a spring and a damper in 
accelerometers and microelecromechanical systems [1], the influence of the 
squeeze-film effect on the dynamics of an AFM cantilever has not been 
previously explored, to the authors’ knowledge. In this project, the stiffness 
and damping properties of the squeeze film between an oscillating AFM 
cantilever and a glass slide were calculated from the cantilevers’ amplitude 
and phase responses as recorded by the AFM digital system. The smaller 
the cantilever-sample gap, the larger the absolute values of the stiffness and 
the damping of the squeeze film. Results from different cantilevers 
(consequently having different spring constants and resonant frequencies) 
indicated that the air film exhibited negative stiffness and positive 
damping, with normalized changes from free values of up to 40%. 
Theoretical analysis was conducted using an equivalent-circuit model [2] 
along with the phasor diagram, and the derived stiffness and damping 
values were in excellent agreement with the experimental ones. 
Interestingly, a rotation angle between 20o and 30o in the fit of the data to 
the model reveals a phase lead of the squeeze-film damping before the usual 
air damping when the cantilever is far from a surface: the maximum 
squeeze-film damping occurs before the maximum velocity of the cantilever 
because air becomes less dense as it rushes out of the tip-sample gap. The 
surprising sign of the stiffness is thus explained by the phase lead. Future 
work includes incorporating the squeeze-film effect into more accurate 
measurements of a material’s stiffness and damping properties using 
dynamic AFM. 
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