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Selective Deposition as an Enabler of Self-Alignment 
Focus Topic 
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Fundamentals of Selective Deposition 
Moderator: Scott Clendenning, Intel Corporation, Suvi 
Haukka, ASM Microchemistry Ltd., Finland 

8:00am  SD+AS+EM-ThM1  Fundamental Examinations of Surface 
Chemistry-Driven Approaches to Selective Area Atomic Layer 
Deposition, W. Zhang, J.-R. Chen, James Engstrom, Cornell University 
Most approaches taken to date concerning selective area growth have 
involved the use of masking layers consisting of photoresists or self-
assembled monolayers (SAMs). While some success has been achieved 
with this approach there are a number of disadvantages intrinsic to these 
methods. First, SAMs are very difficult to form defect free, and second, and 
perhaps more important, these masking layers themselves must be patterned 
or deposited selectively. A second approach to selective area ALD relies on 
intrinsic reactivity differences between exposed surfaces, which, 
unfortunately, may be limited to a few special cases. Here we seek to 
develop a more general approach to achieving selective area growth. We 
initially focus on the first half-cycle of ALD, where demonstrating 
selectivity for this part of the ALD process is a necessary, but not sufficient 
condition for selective area growth. We are examining two specific 
approaches to the surface chemistry: (i) the use of adsorption reversal 
agents; and (ii) the use of molecular blocking agents. Here for a thin film 
precursor we examine transition metal complexes with the generic structure, 
M(XRm)n, where M is the transition metal and XRm is the coordinating 
ligand. In pursuing strategy (i) we examine the introduction of a second 
species in the first half-cycle that can act as a coordinating ligand, e.g., 
HXR′m, or HXR′m-1R″, etc. In pursuing strategy (ii) species (Y) are selected 
that can effectively compete for adsorption sites, dependent on the 
composition of the substrate. Concerning strategy (i) we are currently 
investigating reactions between transition metal amido compounds and a 
series of amines (X = N). We have found a somewhat unexpected result for 
this chemistry: the partial pressure of H2NR′ produces similar effects on 
both a metal (Cu) and a dielectric (SiO2) surface, where a low partial 
pressure attenuates the irreversible adsorption of the thin film precursor, 
while a high partial pressure results in no adsorption of the precursor. An 
investigation of the reactions between the thin film precursor and a 
molecular blocking agent with the structure HSR″, gave much more 
encouraging results. Here we found complete blockage of chemisorption of 
the thin film precursor on a Cu surface, whereas on SiO2 the molecular 
blocking agent had no effect on the adsorption of the metal for the first half-
cycle. We will conclude this presentation with a discussion of the 
mechanisms that are likely operative in both cases, making use of in situ 
measurements involving X-ray photoelectron spectroscopy, and also initial 
results concerning the effectiveness of this approach for multiple (5-20) 
cycles of ALD. 

8:20am  SD+AS+EM-ThM2  Mechanistic Understanding of Surface-
Selective Chemical Vapor Deposition of Copper Films Using a 
Molecular Inhibitor, Elham Mohimi, S. Babar, B. Trinh, G.S. Girolami, 
J.R. Abelson, University of Illinois at Urbana Champaign 
Surface-selective chemical vapor deposition of thin films can enable the 
fabrication of nanoscale devices by eliminating difficult patterning and 
etching steps. However, stray nucleation of film on the non-growth surface 
due to defect or impurity sites remains a challenging problem. We 
previously demonstrated the use of molecular growth inhibitors in copper 
CVD to control morphology, ranging from a smooth and continuous thin 
film to particles in a narrow size distribution. Here, we show that an 
inhibitor can also be used to afford essentially perfect selective growth. 
Addition of vinyltrimethylsilane (VTMS) molecules during copper CVD 
from the Cu(hfac)VTMS precursor reduces the growth rate of copper on 
copper by a factor of four, but reduces the Cu deposition on thermal SiO2 or 
porous carbon doped SiO2 to below one monolayer (area averaged). In-situ 
FTIR and mass spectroscopy show that the VTMS undergoes associative 
desorption with adsorbed Cu(hfac) intermediate on the non-growth surface, 
and is responsible for the surface selective deposition of copper only on the 
intended (metallic) substrate areas. The processing window for this method 
is wide in terms of VTMS pressures (> 1 mTorr), growth times (1-90 min), 
and substrate temperature (100-180°C).  

8:40am  SD+AS+EM-ThM3  Selective Deposition of Copper-Manganese 
Alloy for Interconnects, Roy Gordon, Harvard University INVITED 
As copper interconnections are made smaller, they fail more easily by 
electromigration. The dominant pathway for motion of Cu atoms is along 
the interfaces between Cu and the surrounding insulator surfaces. In current 
technology, a tantalum nitride diffusion barrier and a Ta or Co adhesion 
layer are placed between Cu and the insulators. Because these layers are 
more resistive than Cu, the composite interconnect line has a higher 
resistance than one that would consist entirely of pure Cu. Here we describe 
how selective placement of manganese within the insulator surface can 
provide the necessary stabilization, adhesion and barrier properties for Cu 
lines without the resistance penalty of TaN/(Ta or Co) layers. After trenches 
and vias are etched into the insulator, CVD is first used to deposit a thin 
layer of manganese nitride conformally on all exposed surfaces of the 
insulator as well as on the Cu exposed at the bottoms of the vias. Then less 
than a monolayer of iodine is chemisorbed onto the MnNx from ethyl iodide 
vapor. Next, this iodine catalyzes selective, bottom-up CVD of Cu-Mn alloy 
so that it fills even the narrowest trenches and vias without any voids or 
seams at the centerlines. The iodine “floats” on the growing surface of the 
Cu, and is finally removed by chemical-mechanical polishing along with the 
Cu-Mn overburden and the MnNx on top of the insulator. During 
subsequent anneals, Mn rapidly diffuses out from the MnNx and from the 
Cu-Mn alloy into the near-surface regions of the insulator to form an 
insulating layer of MnSixOyNz surrounding the Cu. The necessary Cu 
adhesion and barrier properties are provided by this insulating layer of 
MnSixOyNz selectively placed just inside the surfaces of the insulators. 
During anneals, Mn and nitrogen originally located on the Cu surfaces at 
the bottoms of vias disappear as the Mn and N are re-distributed by 
diffusion to nearby insulator surfaces. The result is direct, low-resistance 
connection between Cu in vias with Cu in the metallization level below. 
This selective migration of Mn leaves pure, low-resistance Cu completely 
filling the entire volume of trenches and vias, providing the lowest possible 
line resistance. Thus Mn is placed selectively only where it is required to 
increase adhesion and lifetime before failure by electromigration, to prevent 
diffusion of Cu into the insulator and to avoid corrosion of Cu by water or 
oxygen. The same sequence of process steps can apply Cu to the walls of 
through-silicon-vias to conduct signals from one chip to another. This 
process can also form Cu seed layers for electrodeposition of Cu-filled vias 
for distributing power through silicon chips. 

9:20am  SD+AS+EM-ThM5  Selective Growth of First Row Transition 
Metal Films by Atomic Layer Deposition, Charles Winter, Wayne State 
University INVITED 
Our laboratory seeks to develop the growth of metallic first row transition 
metal thin films using atomic layer deposition (ALD). The microelectronics 
industry is calling for the growth of metallic first row transition metal films 
by the ALD method for a variety of applications, including copper 
metallization, seed layers for copper metallization, copper/manganese alloys 
for self-forming copper diffusion barriers, and magnetic alloys. The ALD 
growth of noble metal thin films has been explored extensively in the past 
ten years, due to the positive electrochemical potentials of these metal ions 
and relative ease of reduction to the metallic state. The low temperature 
ALD of high purity, low resistivity Cu films has been described, but ALD 
routes to the other metallic first row transition metal films remain poorly 
developed, largely because of the negative electrochemical potentials of 
most of the ions and a corresponding lack of powerful reducing co-reagents 
that can convert precursors in positive oxidation states to the metals. We 
will describe the synthesis, structure, and properties of a large series of new 
first row transition metal ALD precursors containing alkoxide ligands that 
combine high volatilities, high thermal stabilities, and high reactivities 
toward reducing agents. We will also report borane reducing agents that can 
react with the metal precursors to afford metallic films. Additionally, we 
will overview the thermal growth of metallic copper, nickel, cobalt, iron, 
manganese, and chromium thin films from these new precursors. 
Importantly, the growth of these metals is highly selective for noble metal 
substrates, such as ruthenium, palladium, and platinum. The noble metal 
substrates appear to activate the borane reducing agents, thus enabling 
selective metal growth. Chemical insights into the selective growth will be 
presented. 
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11:00am  SD+AS+EM-ThM10  Etching and Chemical Functionalization 
of Silicon Nitride Surfaces for Selective Deposition, L.-H. Liu, T. Peixoto, 
W. Cabrera, D. Dick, J.-F. Veyan, University of Texas at Dallas, D.J. 
Michalak, R. Hourani, Intel Corporation, M.D. Halls, Schrodinger, Inc., 
S.P. Pujar, H. Zuilhof, Wageningen University, Netherlands, Yves J. 
Chabal, University of Texas at Dallas 
The ability to process silicon nitride and oxide films and chemically 
functionalize their surfaces by wet chemical methods is critical for selective 
deposition. The nature of HF-etched silicon nitride surface is complex and 
somewhat controversial. We have therefore performed an extensive study of 
HF etching of both Si3N4 and SiO2 surfaces, combining spectroscopic 
techniques (Infrared absorption, X-ray photoemission, Low energy ion 
scattering), imaging (atomic force microscopy) and contact angle 
measurements with first principles calculations, as a function of HF 
concentration. We have also performed post-treatment in cold and hot 
water, and chemical functionalization with a range of organic molecules to 
help determine the chemical nature of the HF-etched surfaces. 

The nature of silicon nitride surfaces is complex. We find that immediate 
rinsing in deionized water after HF wet-chemical etching yields smooth 
silicon nitride surfaces with clear evidence for Si-F surface termination. 
Low energy ion scattering experiments and XPS measurement as a function 
of gentle sputtering with Gas cluster ion beams (GCIB) confirm that the F is 
all located at the surface (i.e. not distributed into the bulk), and in the form 
of Si-F with high temperature stability (up to 600 oC in ultra-high vacuum). 
Hydrolysis in water is very slow at room temperature, but can be achieved 
at high temperature (~90 % removal at 70 oC for 30 min). However, water is 
found to etch silicon nitride, as evidence by a loss of Si3N4 phonon 
absorption, suggesting that the removal of the surface fluorine may not only 
be due to surface reaction through a direct exchange mechanism via 
pentavalent Si intermediate, but also to the hydrolyzation of Si3N4 itself 
through back-bond chemical attack by water. In addition to F, we find that 
there is also surface -NH2 species, as evidenced by IR active -NH2 bending 
modes at 1550 cm-1, which we estimate to be only ~20 % monolayer from 
analysis of reaction with aldehyde molecules. However, this coverage 
appears sufficient to protect the Si3N4 surface. Finally, LEIS and XPS 
indicate that there is oxygen at the surface, which could either be in the 
form of -OH or Si-O-Si. Functionalization with alkylsiloxanes reveals that 
~50 % of the surface contains Si-OH. In summary, the sum of the 
concentrations (50 %, 20 %, 50 % in ML), i.e. exceeding 1 ML, suggests 
that the etched surface may be atomically rough. Overall, these findings 
provide a method for selective deposition by using first aldehyde reaction 
for Si3N4 functionalization, followed by silane reaction for SiO2 
functionalization.  

11:20am  SD+AS+EM-ThM11  Area Selective Deposition of Ultrathin 
Magnetic Cobalt Films via Atomic Layer Deposition, John Ekerdt, H. 
Nallan, T. Ngo, S. Chopra, Z. Zhang, University of Texas at Austin 
Ferromagnetic thin films find applications in a variety of fields, such as 
electronics, spintronics, RF technology, energy, etc. With ever-decreasing 
device feature sizes, film conformity and crystalline structure become very 
important to determining magnetic properties. As such, atomic layer 
deposition (ALD) is a very attractive technique for magnetic film deposition 
as it ensures atomic level conformity. Since ALD film growth necessarily 
involves a film nucleation step, it is possible to engineer the surface energy 
of the substrate to cause preferential wetting and nucleation in only desired 
areas, resulting in area selective ALD (AS-ALD). Unlike conventional 
photolithography-based fabrication, a bottom-up patterning approach could 
eliminate the need for etch steps, reducing the cost of fabrication and 
overcoming scaling limitations in manufacturing devices. This work 
investigates the selective deposition of cobalt oxide via ALD that is 
subsequently reduced to carbon-free cobalt metal for use as the free 
magnetic layer within the magnetic tunnel junction of spin-transfer torque 
random access memory.  

Alkylchlorosilanes and poly(trimethylsilylstyrene) are utilized to block 
water and cobalt bis(N-tert butyl, N'-ethylpropionamidinate) from an oxide 
substrate, such as silicon dioxide, hafnium dioxide and magnesium oxide, 
ensuring selective deposition of CoO films. Poly(trimethylsilylstyrene) is 
the half of a lamellar forming diblock copolymer that remains after self-
assembly and feature development. The alkylchlorosilanes can be blanket 
deposited through the vapor phase or stamped onto the oxide surface using 
a poly(dimethylsiloxane) stamp. Cobalt oxide ALD proceeds on the 
exposed oxide surface. Strontium and Al are deposited atop the CoO films 
to scavenge oxygen during thermal annealing to yield cobalt metal films. 
Alternatively, reducing gases such as CO and H2 can be employed as an 
oxygen sink during thermal reduction of CoO to Co metal. Finally, we 
demonstrate control over the tunability of the coercivity of the resultant 
films by controlling the reduction conditions.  

11:40am  SD+AS+EM-ThM12  Area-Selective Al2O3 Pattern Grown by 
Atomic Layer Deposition, Seunggi Seo, H. Jung, I.K. Oh, H. Kim, Yonsei 
University, Republic of Korea, J. Yoon, C. Yoo, H.-J. Kim, Y.-B. Lee, LG 
Display Co., Ltd., Republic of Korea 
Over many past years, area-selective atomic layer deposition (AS-ALD) has 
been developed for fabricating 3D nanostructures. ALD is a method to 
deposit thin films by self-limiting surface reactions between supplied 
gaseous precursors. Since ALD is a surface sensitive deposition technique, 
surface modification of substrate renders the deposition of films to be area-
selective. Most previous studies on AS-ALD have utilized self-assembled 
monolayer (SAM), which inhibits the chemical reaction between substrate 
and precursors, so that the film cannot grow on SAM-coated area. AS-ALD 
has been studied on various materials, such as TiO2, ZnO, and HfO2. 
Although Al2O3 has been widely used for ALD, there is no experimental 
report on AS-ALD Al2O3 by using SAM. Rather, a previous report on the 
calculation of surface reactions between TMA and SAM by density 
functional theory (DFT) has been presented[1]. That paper describes that 
CH -terminated SAM shows no thermodynamic driving force for the 
reaction between them, leading to AS-ALD Al2O3 by using TMA. 

In this work, we systematically investigated AS-ALD of Al2O3 on SAM in 
various conditions, such as SAM coating methods, the kinds of SAM and 
substrate, and ALD process parameters. Addressing previous calculation 
report, Al2O3 was deposited on CH3-terminated SAM, 
octadecyltrichlorosilane (ODTS) and octadecylphosphonic acid (ODPA).  

However, we observed Al2O3 layers were formed on SAM coated SiO2 and 
Ti substrate, which is inconsistent with previous report. To clarify, we 
investigated ALD Al2O3 on SAM coated substrate by using various analytic 
techniques such as contact angle measurement, Fourier transform infrared 
spectroscopy, ellipsometry, X-ray photoelectron spectroscopy (XPS), X-
ray-reflectometry (XRR), and α-scanning. We observed TMA was 
physisorbed on CH3-terminated SAM, leading to Al2O3 deposition. 
Alternatively, we moved to our research toward the change of SAM coating 
methods, dipping and stamping, to lift both Al2O3 and underneath SAM 
coating off. Since stamping method is a faster process than dipping one, so 
that SAM by stamping might remain randomly distributed as forming weak 
bonding between SAMs and substrate. Moreover, we chose ODPA as a 
SAM due to its poor adsorption on SiO2. We observed that both Al2O3 and 
its underneath ODPA stamped on SiO2 were lifted-off from the substrate, 
resulting in area-selective Al2O3 pattern. This result opens a new way to 
patterning techniques for many areas of technology. 

[1] Xu et al./ Chem. Mater. 2004, 16, 646-653 

 



 3 Thursday Afternoon, October 22, 2015 

Selective Deposition as an Enabler of Self-Alignment 
Focus Topic 
Room: 210F - Session SD+AS+EM+PS-ThA 

Process Development for Selective Deposition and Self-
aligned Patterning 
Moderator: John Ekerdt, The University of Texas at Austin, 
Chuck Winter, Wayne State University 

2:20pm  SD+AS+EM+PS-ThA1  Surface Chemistry Related to Selective 
Deposition, Suvi Haukka, ASM Microchemistry Ltd., Finland, J.W. Maes, 
ASM Belgium INVITED 
The shrinking device dimensions in semiconductor manufacturing call for 
new innovative processing approaches. One of these considered is selective 
deposition which has gained increasing interest among semiconductor 
manufacturers today. Selective deposition would be highly beneficial in 
various ways, for instance, it would allow a decrease in lithography and 
etch steps reducing the cost of processing and enable enhanced scaling in 
narrow structures making bottom up fill possible. Chemical vapor 
deposition (CVD) and especially atomic layer deposition (ALD) as very 
surface sensitive techniques are considered enabling techniques.  

Selective deposition typically deals with a selective deposition method 
where, for instance, a metal layer is selectively deposited on metal surface 
over dielectric surface, or a dielectric layer is selectively deposited on 
hydrophilic polymer over a more hydrophobic polymer. In most of the 
selective deposition schemes of today the passivation is used for the surface 
on which no deposition is desired. The most known method is to use SAM´s 
(self-assembled monolayers) which are silicon compounds with long carbon 
chains. Besides the SAM passivation of surfaces also the clever selection of 
precursors with built-in selectivity in certain process conditions could be 
applied. 

In this paper, the chemistry challenges in the various selective deposition 
approaches and passivation means are reviewed. In addition, results from 
the selective deposition of metal on metal over dielectric surface in a Cu 
capping application and from selective strengthening of DSA (direct self-
assembly) layers are presented.  

3:00pm  SD+AS+EM+PS-ThA3  Selective Deposition - The New 
Patterning Paradigm?, Florian Gstrein, Intel Corporation INVITED 
Top-down patterning techniques based on optical lithography have made 
consumer electronics ever more powerful, ubiquitous and affordable. This is 
largely due to the ability of lithographic techniques to transfer trillions of 
mask features to wafers at defect densities approaching virtually zero in 
high-volume manufacturing. While the resolution of optical lithography 
tools is typically considered to be the main challenge for continued device 
scaling, it is actually accurate pattern placement, which has emerged as the 
biggest concern. Novel bottom-up patterning approaches such as selective 
deposition are needed to overcome shortcomings in pattern placement 
accuracy. 

The talk will first outline the challenges patterning processes based on 193i 
pitch division and EUV lithography face in terms of alignment accuracy and 
how complementary patterning techniques such as selective deposition can 
reduce pattern placement errors. One of the great challenges of selective 
deposition is defect mitigation, especially as the sensitivity to killer defects 
increases as device dimensions scale. Defect mitigation requires a 
fundamental understanding of the chemical selectivity of surfaces. While 
molecules can recognize chemical functionality on a surface, selective 
deposition processes based on atomic layer deposition (ALD) or chemical 
vapor deposition (CVD) are exceedingly rare and largely limited to specific 
precursors and substrates. For metal deposition, inherent selectivity was 
achieved through judicious precursor ligand design. Experimental results 
will be presented in the context of a theoretical investigations aimed at 
calculating the kinetic barriers that govern the selectivity of metal 
deposition. The use of self-assembled monolayers (SAMs) as passivants 
and/or blocking layers for subsequent deposition is an attractive way of 
overcoming the non-selectivity of many CVD or ALD processes. Here, the 
critical parameters for selective blocking are choice of the terminal group, 
surface termination, carbon chain length, and proper precursor choice. 
Using SAMs, selective deposition of dielectrics with respect to a variety of 
surfaces was achieved. The talk will conclude with our vision of how 
defects can be mitigated: It comprises a fundamental understanding of the 
chemical nature of the surface, precursors with high kinetic barriers for 
defect formation, passivation of defect nucleation sites, and the removal of 
defects post deposition. Selective deposition, if properly resourced and 

developed, can provide powerful means to future scaling and is one way of 
ensuring that patterning will continue to support Moore’s Law in the 
foreseeable future. 

4:00pm  SD+AS+EM+PS-ThA6  Area-Selective Molecular Layer 
Deposition: Enhanced Selectivity via Selective Etching, Richard Closser, 
D.S. Bergsman, F.H. Minaye Hashemi, S.F. Bent, Stanford University 
Recent developments in electronic devices are pushing toward smaller and 
smaller features of both metal and dielectric patterns, along with a desire to 
produce selectively deposited organic thin films on such patterns. 
Techniques that allow for a high degree of control over the thickness and 
conformality of organic thin films, such as molecular layer deposition 
(MLD), are ideal candidates to meet these selective deposition 
requirements. Using MLD, several types of thin film polymers can be 
deposited with angstrom-level control due to the sequential, self-limiting 
surface reactions resulting in monomer-by-monomer growth. Selectivity in 
the MLD polymer growth is then achieved by utilizing the chemical 
functionally between the solid substrate surface and the gas phase monomer 
precursors.  

Previously, we have shown the ability to selectively deposit thin film 
polymers by MLD onto pre-patterned metal and dielectric substrates by 
utilizing a blocking layer of octadecylphosphonic acid (ODPA) self-
assembled monolayers (SAMs) that deposits onto metals more readily than 
onto dielectric films. Although this process can prevent MLD for up to 6 
nm of deposition, selectivity of polymer growth is lost for thicker films, and 
therefore we are exploring new methods for increasing the MLD selectivity. 
For the current studies, ODPA SAM is deposited onto a patterned 
metal/dielectric (Cu on SiO2) substrate to act as the MLD blocking layer. 
Once the SAM is fully deposited, polyurea films are grown onto the 
substrate by MLD to a desired thickness which can be controlled by the 
number of monomer dose cycles used. An acid etchant is then used to 
remove the surface oxide of the metal along with the SAM layer while 
leaving intact the polymer film deposited onto the dielectric. X-ray 
photoelectron spectroscopy, Auger electron spectroscopy, and ellipsometry 
measurements show that this process removes undesired MLD film that was 
deposited on the metal. Studies on patterned substrates confirm selective 
polymer film growth onto the dielectric over the metal. The etchant removal 
technique thus increases the selectivity of MLD growth by more than an 
order of magnitude when compared to the SAM blocking layer alone. Due 
to the increased selectivity with the etching based process, selective 
deposition of MLD films as thick as 12 nm have been demonstrated. 
Atomic force microscopy results show slight surface roughening due to 
etching while the bulk of the metal/dielectric pattern remains intact. This 
increase in MLD selectivity should allow for novel applications of selective 
polymer film deposition.  

4:20pm  SD+AS+EM+PS-ThA7  Nucleation and Steady State ALD of 
Metallic Tin Using SnCl4 and a Silyl Pyrazine Reducing Agent, Eric 
Stevens, M.B. Mousa, G.N. Parsons, North Carolina State University 
Metal atomic layer deposition (ALD) processes are typically limited to 
noble, high work-function metals where uniform nucleation and conformal 
growth can be problematic. Recent work suggests that 1,4-
bis(trimethylsilyl)-1,4-dihydropyrazine (DHP) could be an effective 
reducing agent for deposition of metals with highly negative 
electrochemical potentials. This work investigates DHP as a potential 
reducing agent for tin metal ALD using tin (IV) chloride (SnCl4). 

Experiments were carried out in a custom-built, hot-wall reactor using N2 
carrier gas, an operating pressure of 1.3 Torr, and temperatures between 130 
and 170°C. The DHP source was heated to 70°C to maintain a vapor 
pressure ~1.2 Torr. Initial films were deposited at 130°C on silicon using a 
SnCl4/N2/DHP/N2 exposure sequence of 4/50/10/50 seconds, then analyzed 
ex-situ by X-ray photoelectron spectroscopy (XPS) with Ar depth profiling. 
In sputtering deeper into the film, XPS exhibited both Sn-Sn and Sn-O 
peaks at 485 and 486.7 eV, respectively, where a decrease in Sn-O and an 
increase in Sn-Sn peak intensities suggests native oxidation of the film upon 
exposure to air. Furthermore, 7% Cl and 19% N were found in the films 
after sputtering, presumably from an incomplete reaction and/or 
incorporation of reaction byproducts. 

To better understand surface reactions and growth mechanisms, we 
characterized the ALD process at 130, 150, and 170°C using in situ 
quadrupole mass spectrometry (QMS) and quartz crystal microbalance 
(QCM). QCM analysis at 130 and 150°C showed continued growth with 
extended exposures, consistent with non-ALD growth. Deposition at 170 °C 
was more repeatable and more closely approached surface saturation. At 
170°C, QCM showed a clear mass increase during the SnCl4 dose and a 
corresponding mass decrease during the DHP dose, consistent with DHP 
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removing Cl and reducing the Sn-Cl surface. Moreover, the QMS results 
showed peaks exclusively during DHP doses at m/z values of 80 (pyrazine) 
and 65, 93, 95 (trimethylsilyl chloride), which are the most probable 
byproducts of DHP reacting with a chlorinated surface. 

Using gold-coated QCM crystals at 170°C, Sn growth proceeds slowly for 
the first ~150 ALD cycles, whereas growth on QCM crystals previously 
coated with Sn show a more rapid transition to steady-state growth (<20 
cycles). We are currently investigating the nucleation on different substrates 
and how process conditions can be tuned to achieve selective deposition. 
Understanding the surface reaction and growth mechanisms of tin metal 
deposition using DHP could provide a foundation for deposition of metal 
thin-films that were previously unattainable. 

4:40pm  SD+AS+EM+PS-ThA8  Determination of the Minimum 
Saturating Dose during Atomic Layer Deposition of Alumina and 
Titania on Si(100) and Si(100)-H, D. Dick, University of Texas at Dallas, 
Joshua Ballard, J. Randall, Zyvex Labs, Y.J. Chabal, University of Texas 
at Dallas 
Atomic layer deposition (ALD) has become an important process step in 
semiconductor manufacturing, where the self-limiting nature of each step of 
the process permits atomic scale control over the ultimate layer thickness in 
addition to relatively fast processing with high pressure reactors. However, 
it has been shown that ALD can be used to selectively deposit material onto 
patterned surfaces, requiring not only saturation of each deposition cycle in 
desired areas but also suppression of deposition in those areas where it is 
undesirable. One mechanism for improving practical selectivity would be to 
find the minimum exposure that is saturates the growth where desired in 
order to avoid excess overall reaction probability in areas where inhibited 
growth is preferred. 

To investigate this, we have examined the deposition in vacuum (“UHV 
ALD”) of Al2O3 and TiO2 with TMA and TiCl4, respectively, on both 
hydrophobic, H-terminated Si(100) surfaces and hydrophilic OH-terminated 
Si(100) surfaces prepared by H2O exposure of clean Si(100)-(2x1) surfaces. 
Surface reactions and relative coverages are determined by in-situ IR 
spectroscopy, and ex-situ XPS. We find that good selectivity can be 
achieved at 150oC. Preliminary data and calculations also suggest that an 
initial wetting layer of TMA on clean Si(100) promotes subsequent growth 
of TiO2 or other high-k dielectrics. Finally, we will discuss how these 
findings have made it possible to develop a full multi-cycle process for a 
custom low-pressure ALD system equipped with scanning tunneling 
microscopy and atomic force microscopy. 

5:00pm  SD+AS+EM+PS-ThA9  Selective Growth of GeSbTe Phase-
Changing Materials Utilizing Self-Aligned Confined Structure, 
ByungJoon Choi, Seoul National University of Science and Technology, 
Republic of Korea, T. Eom, C.S. Hwang, Seoul National University, 
Republic of Korea 
GST Phase changing material, typically GeTe–Sb2Te3 pseudo-binary solid 
solution, has been extensively studied for rewritable digital versatile optical 
disks or phase change random access memory (PcRAM), on account of the 
drastic change of its optical reflectivity or electrical resistivity between 
amorphous and crystalline phases. As the device size of PcRAM is scaled 
down, GST materials should be confined into the contact-plug for reducing 
its programming current, which cannot be achieved by any physical 
deposition method. 

Among the various metal-organic (MO) precursors, the combination of 
Ge(iBu)4, Sb(iPr)3 and Te(iPr)2 has been extensively studied for plasma 
enhanced chemical vapor depostion or its variant methods with plasma-
activated H2 gas as a reducing agent of the MO-precursors. Plasma-
enhanced pulsed CVD was attempted using the precursor pulse sequence 
consisting of Sb–Te–Ge–Te cycles (each elemental cycle is composed of 
precursor injection and Ar + H2 plasma reduction steps). The chemical 
composition of the films was appropriately controlled by the cycle ratio and 
sequence of each precursor pulse. The linear growth with the number of 
cycles was shown, and the GPC (growth-per-cycle, i. e. growth rate) was 
determined to be 0.73 nm/super-cycle from the slope at a wafer temperature 
of 200◦C. 

Strong substrate dependency can be utilized in the selective growth of GST 
material on a TiN contact-plug formed in the SiO2 inter-layer dielectric 
(ILD). Higher selectivity (difference of GPC) between TiN contact-plug and 
SiO2 ILD layer was achieved by pulsed CVD with increasing the amount of 
Te(iPr)2 injection. The reason for the selective growth was believed to have 
originated from the adverse interference of the residual gas (unreacted 
Te(iPr)2 or its derivatives) to the chemical adsorption of Sb nuclei on the 
SiO2 surface, which functions as a nucleation site for further GST growth. It 
was reported that amide-based Ge precursors also showed strong selectivity 
at a particular temperature, enabling Sb and Te precursors to be 
chemisorbed on the Ge seed layer, which could be utilized for selective 
growth of GST.  

The most feasible explanation for the substrate-dependent growth behavior 
of the GST film is the electron donation from the substrate, which would 
enhance the precursor decomposition and removal of ligands from the 
adsorbed precursor molecules. The nucleation and growth behaviors of the 
GST films were studied on Si substrates with various nucleation or buffer 
layers. It turned out that the types of substrates have a crucial impact on the 
nucleation behaviors and the chemical composition of the film. 

5:20pm  SD+AS+EM+PS-ThA10  Toward an All- Vapor Process for 
Area Selective Atomic Layer Deposition, FatemehSadat Hashemi, S.F. 
Bent, Stanford University 
Modern electronic devices containing planar and 3-D structures utilize a 
number of metal/dielectric patterns in both the front and back end. The 
scaling of next generation electronic devices makes achieving these patterns 
increasingly difficult and motivates the development of novel processing 
methods. One such method−area selective deposition−has the opportunity to 
play an important role in significantly reducing process complexities 
associated with current top-down fabrication of patterned structures by 
eliminating some of the deposition and etching steps that are time-
consuming and expensive. 

Atomic layer deposition (ALD) is a good choice for area selective 
deposition because its chemical specificity provides a means to achieve 
selectivity on a spatially patterned substrate. Area selective ALD, reported 
previously by several groups, requires improvements for the process to be 
compatible with current device fabrication goals. Most previous studies of 
area selective ALD have achieved deposited thicknesses on the order of 
only a few nanometers and the selectivity was generally obtained by 
passivation of the surface using self-assembled monolayers (SAMs) in the 
regions where ALD was not desired. Existing methods are usually 
performed by dipping the substrates into a solution containing the SAM-
forming molecules for several hours. A more desirable all-vapor process 
would require vapor delivery of the SAMs. This method would provide 
better SAM coverage on porous or three-dimensional structures, potentially 
decreasing the required deposition time for the passivation layer, and 
allowing the SAM passivation step to be integrated with the rest of the ALD 
process. 

In this work, we investigate area selective dielectric-on-dielectric deposition 
by selectively depositing organic alkanethiol SAM as the blocking layer on 
metal parts of a metal/dielectric (Cu/SiO2) pattern. We compare area-
selective ALD achieved by introduction of the thiolate SAM in both the 
solution and vapor phase. We show that while in both cases the SAM can 
prevent subsequent deposition of metal oxide dielectric films via ALD, 
vapor deposition provides stronger passivation in a shorter exposure process 
on the metal. We also report results on regenerating the thiol SAM 
protecting layer from the vapor phase between ALD cycles and show that 
this approach is effective in improving the blocking properties of the SAM 
on Cu. This strategy provides the ability to significantly improve selective 
deposition of dielectrics. Moreover, it is a significant step toward an all-
vapor process for area selective deposition, opening up the possibility for 
new applications in next generation electronic devices. 

5:40pm  SD+AS+EM+PS-ThA11  Selective Deposition of ALD Metal 
oxides and Metal Thin Films by Fab-Friendly Surface Treatments, 
Kandabara Tapily, K.-H. Yu, S. Consiglio, R. Clark, D. O'Meara, C. 
Wajda, G. Leusink, TEL Technology Center, America, LLC 
For the last 5 decades, the semiconductor industry has relied on the 
continued scaling down of the device feature size in order to improve 
performance and increase bit density according to Moore’s law. However, 
with the delay in implementation of extreme ultraviolet lithography (EUV) 
in high volume manufacturing,1 patterning beyond the 14 nm technology 
node is getting extremely difficult to manage due to the overlay control and 
the increase in manufacturing cost due to multi-layer alignments. In order to 
keep reducing the device feature size, new patterning solutions are needed 
such as selective deposition and selective etching of materials. Atomic layer 
deposition (ALD) has emerged as one of the leading film deposition 
techniques as a result of the semiconductor device scaling.2 ALD provides 
excellent film control, uniformity and high conformality. ALD is highly 
surface reaction driven and it is possible to modify the substrate surface to 
activate or deactivate growth on selected area hence selective-area ALD 
(SA-ALD). Selective-area ALD can simplify and reduce the high 
manufacturing cost associated with highly aggressive patterning schemes by 
eliminating certain lithography steps. Thin films can now be selectively 
deposited or removed from a desired area. Most selective-area ALD studies 
in the literature are conducted with the use of self-assembled monolayers 
(SAMs) in order to deactivate or activate growth on certain areas.3-5 SAMs 
are thin organic films that form spontaneously in tightly packed oriented 
molecules on solid surfaces. A key enabler of SAMs is the ability to turn 
these organic layers into patterned layers. However, thermal stability and 
the slow formation process into well packed layer are some of the major 
drawbacks of SAMs.5 
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In this study, a non SAMs based approach was used to inhibit ALD growth 
of metals and metal oxides. Using different surface treatments, it was 
observed the growth of the ALD thin films can be modulated, see Fig.1 and 
Fig.2 respectively. ALD Al2O3 growth was suppressed by a combination of 
the vapor HF and cyclical low temperature plasma hydrogen treatment and 
deposition. Additionally, ALD TaN growth was also inhibited by the use of 
a combination trimethylsilane (TMS) and dimethylamine (DMA) treatment 
of the surface prior to ALD deposition. 
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