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8:20am  SS+AS+EN+NS-TuM2  ENDOM: A Simple Method to Deposit 
Nanostructures from Nanowires to Nanopores, Ashley Ellsworth, A.V. 
Walker, University of Texas at Dallas 
A key challenge in the practical application of nanostructures is their 
effective integration through assembly, patterning and alignment on 
technologically relevant substrates. We have recently demonstrated a new 
technique, electroless nanowire deposition on micropatterned substrates 
(ENDOM), by which to simultaneously synthesize and place nanowires on 
chemically patterned substrates. The nanowires can be precisely oriented on 
the surface in arbitrary shapes, such as an arch and around a right angle 
bend. In ENDOM, the shape of the deposit is controlled by the substrate 
pattern while its width is controlled by the reaction conditions. By 
employing longer deposition times and the appropriate substrate patterns, 
nanopores and nanochannels can be produced. However for sensing and 
nanoelectronic applications, free standing nanopores and nanochannels are 
generally employed. We have observed that the nanostructure adhesion to 
the surface is dependent upon the reagent concentrations. For example in 
Cu ENDOM, upon reduction of triethanolamine (complexing agent and 
buffer) concentration, nanowires no longer adhere strongly to the substrate 
and can be transferred to another substrate. In this presentation, we shall 
discuss the mechanisms of adhesion, transfer of these nanostructures to 
other substrates and proof-of-concept studies to synthesize free-standing 
nanostructures. 

8:40am  SS+AS+EN+NS-TuM3  Chemical Reaction on Photo-excited 
Plasmonic Nanostructures, Sulio Linic, University of Michigan INVITED 
We will also show that plasmonic silver nanoparticles, optically excited 
with low intensity visible light, exhibit direct photo-catalytic activity in a 
number of oxidation reactions.1 We will discuss underlying mechanisms 
associated with these phenomena and predictive models that can capture the 
outcome of chemical transformations on these materials.2,3,4 We propose 
that this new family of plasmonic metal photo-catalysts could prove useful 
for many heterogeneous catalytic processes that cannot be activated using 
conventional thermal processes on metals or photo-catalytic processes on 
semiconductors. I will show an example of such a process. 5  
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9:20am  SS+AS+EN+NS-TuM5  Structured Noble Metal Nanosurfaces 
for Biosensing and Bioanalysis (4): TLC-SERS and In Situ Monitoring 
of Surface-Adsorbed Target Molecules, Hiroyuki Takei, J. Saito, K. 
Watanabe, Toyo University, Japan, T. Okamoto, Riken, Japan, H. Vieker, A. 
Beyer, A. Gölzhäuser, Bielefeld University, Germany 
Surface-enhanced Raman spectroscopy, SERS, is a powerful technique for 
in-situ characterization of chemical species. Requisite noble metal 
nanosurfaces can be prepared with a variety of techniques, ranging from 
simple vacuum deposition of a metal followed by annealing to intricate 
processing by electron beam lithography. Some commercial SERS plates 
are now available, and it is sometimes possible to detect signals from even 
single molecules if pure. However, in real-world applications, target 
molecules are often found in mixtures, either containing other Raman-active 
chemical species or a background material that can overwhelm the target 
molecule. It can also happen that one might be interested in directly 
obtaining SERS spectra of chemical species adsorbed on a solid surface.  

When faced with a mixture sample, we can carry out separation before 
SERS measurement. To do so, we incorporated a SERS layer into a thin 
layer chromatographic plate. While a number of workers have reported 
applying noble metal nanoparticles after separation with a conventional 
TLC plate, we feel that such an additional step is cumbersome and does not 
guarantee uniformity in SERS signals. Our TLC-SERS is prepared with the 
following procedure; (1) adsorption of 100 nm diameter SiO2 nanospheres 
as a dense monolayer on a glass slide, (2) evaporation of gold or silver with 

thicknesses up to 100 nm, and (3) spreading of chromatography silica gels. 
Steps (1) and (2) give rise to surface-adsorbed cap-shaped noble metal 
nanoparticles. We demonstrate that the TLC-SERS can actually separate 
mixture samples and provide in-situ SERS spectra. Two examples will be 
used to demonstrate the utility of our TLC-SERS plates. One deals with a 
mixture of roughly equal portions of Raman-active chemical species, 
rhodamine 6 G, crystal violet and BPE. The other is skim milk to which a 
trace amount of melamine has been added. We show that the three-
component mixture could be separated and SERS spectra of all three 
components could be obtained separately and that melamine added to skim 
milk could be detected after separation but not before. 

For detection of surface-adsorbed chemical species, we prepared silver 
nanoparticles on a PDMS sheet, using the same protocol as above. The 
PDMS sheet can be made less than 1 mm thick so that with an appropriate 
pressurization system, pressure can be applied to the PDMS sheet in order 
to press the silver nanoparticles against a near-by solid surface to which 
target molecules are adsorbed. Such a system can be utilized to detect, for 
example, residual pesticides on agricultural produces. We will demonstrate 
direct detection of ferbam on a grapefruit.  

9:40am  SS+AS+EN+NS-TuM6  Growth and Intercalation of Cu and 
Dy on the Basal Plane of Graphite, Patricia A. Thiel, D. Appy, E.J. 
Kwolek, D. Shao, M. Wallingford, M.C. Tringides, J.W. Evans, Y. Han, 
Iowa State University, H. Lei, Institute of Solid State Physics, CAS, China, 
C.-Z. Wang, Iowa State University 
Graphite, and surface processes on graphite, serves as a valuable benchmark 
for carbon-based materials such as graphene. We have studied copper and 
dysprosium on graphite, deposited by an e-beam evaporator in UHV and 
imaged with STM, to determine the characteristic features of nucleation and 
growth of metal islands. One of the fundamental questions that arises 
naturally is whether metal nucleates homogeneously on the terraces or 
whether it nucleates heterogeneously at defect sites. To answer this question 
we employ several tools, especially a comparison between high-level van 
der Waals theory for single atom diffusion, and measured island density. 
We also present evidence for unexpected metal intercalation at the surface 
of graphite, after treatment at elevated temperature.  

11:00am  SS+AS+EN+NS-TuM10  Surface-Mediated Self-assembly of a 
Flexible Nucleoside Analogue into Micron-sized Hydrogen-bonded 
Polymers, Jun Wang, P. Bonnesen, Oak Ridge National Laboratory, E. 
Rangel, E. Vallejo, A. Sanchez-Castillo, Universidad Autónoma del Estado 
de Hidalgo, Mexico, H.J. Cleaves, Tokyo Institute of Technology, Japan, 
A.P. Baddorf, B. Sumpter, M. Pan, P. Maksymovych, M. Fuentes-Cabrera, 
Oak Ridge National Laboratory 
We report on an extraordinary large-scale surface-mediated molecular self-
assembly of a flexible nucleoside analogue into a well-organized hydrogen-
bonded polymer on Au(111). The nucleoside analogue is (RS)-N9-(2,3-
Dihydroxypropyl)Adenine (R,S-DHPA), and it consists of the Adenine 
nucleobase and a tethered glycol group. Employing scanning tunneling 
microscopy and density functional theory calculations we show that the 
polymer primarily self-assembles along the Au(111) herringbone 
reconstruction pattern and extends to the micrometer scale and beyond. The 
profound propensity toward self-assembly in this case arises from the 
properties of the glycol moiety of the R,S-DHPA molecule: it is linear and 
flexible, and these features, together with the specific ways in which the 
glycol and the Adenine moieties can hydrogen bond, confer R,S-DHPA 
with a superior self-assembly ability. Our results suggest that nucleoside 
analogues with flexible acyclic groups could provide the means for 
synthesizing substrate-supported mesoscale hydrogen-bonded polymers. 
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11:20am  SS+AS+EN+NS-TuM11  Nanowire Kinking during Vapor-
liquid-solid Growth: Experiments and Simulations, Yanming Wang, Y. 
Li, Stanford University, S. Ryu, Korea Advanced Institute of Science and 
Technology, P.C. McIntyre, W. Cai, Stanford University 
Nanowires (NWs) are promising components for next-generation electronic 
and optical devices, and the vapor-liquid-solid (VLS) growth is a widely 
studied method for NW fabrication. However, many fundamental questions 
regarding the VLS mechanism are still not understood, such as NW kinking 
during growth. Kinking, a sudden change in axial orientation of nanowires 
during growth, is a common defect that complicates the directed synthesis 
of these nanocrystals. Understanding such defects is important for better 
control of the NW orientation, yield and quality required for applications. 
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Experimental studies of coherent kinking of germanium nanowires detect 
two different kinking structures. One structure, which is most pronounced 
for Ge NW’s of diameter close to 20 nm, involves kinking from a vertical 
<111> to <110> growth axis on Ge (111) single crystal substrates. The 
other involves kinking from the vertical [111] axis to an inclined <111> 
growth direction for NWs of > 30 nm diameter. 

The balance of capillary forces driving these two modes of kinking are 
analyzed quantitatively. We developed a 3D multi-phase field model for 
VLS NW growth. The model captures the NW tapering and sidewall facets 
in good agreement with experimental observations. The model predicts the 
steady-state NW growth velocity is a linear function of the vapor chemical 
potential and the inverse of catalyst diameter, providing a confirmation of 
the Gibbs-Thomson effect in nanowire growth. With anisotropic interfacial 
energies, the model shows the NW growth orientation dependence on 
catalyst diameter and hence it provides an explanation of the NW kinking in 
the steady-state growth regime. In this model, we introduce a perturbation 
force to induce the NW structural transition and the free energies are 
evaluated at different stages during the droplet movement. It enables us to 
discuss the instability of the catalyst droplet for different pedestal structures, 
which is important for understanding the onset of the kinking at the NW 
base.  

11:40am  SS+AS+EN+NS-TuM12  Adsorption of Water and Bromine 
on Gold Nanoclusters Investigated by Neutralization in Low Energy 
Alkali Ion Scattering, Christopher Salvo, J. Keagy, J.A. Yarmoff, UC 
Riverside 
Small gold (Au) nanoclusters have been heavily studied because of their 
intriguingly high catalytic activity, especially when compared to bulk gold. 
We employ a specialized method of Low Energy Ion Scattering (LEIS) to 
probe the electronic properties of nanoclusters prepared with a variety of 
methods. The experiments measure the neutralization probability of singly 
scattered alkali ions, which is acutely sensitive to the local electrostatic 
potential a few Å’s above the surface. Because the Au atoms are much more 
massive than the substrate atoms, this method allows the signal from the 
nanoclusters to be separated from that of the substrate so that the 
neutralization reflects the local properties of the cluster surfaces. Earlier 
work had demonstrated that the neutralization is a function of cluster size, 
and that it is enhanced for the smallest clusters presumably because they are 
negatively charged [1]. The work presented here investigates the adsorption 
of water and Br on Au nanoclusters grown on TiO2 or SiO2. There are 
multiple factors that can contribute to a change in the neutralization of the 
scattered ions, such as the cluster size, shape, or charge state. When Br 
attaches to a nanocluster, the neutralization decreases presumably due to 
charge transfer from the cluster to the electronegative Br atom. 
Surprisingly, it is found that the neutralization of scattered K+ ions increases 
in the presence of adsorbed water at liquid nitrogen temperatures. 
Furthermore, the increase of neutralization for adsorbed water is 
independent of whether the water or the Au is deposited first. Possible 
explanations for these observations will be discussed.  

[1] G.F. Liu, Z. Sroubek and J.A. Yarmoff, Phys. Rev. Lett., 92, 216801 
(2004). 

12:00pm  SS+AS+EN+NS-TuM13  Optical Constants Measured for Fe, 
Ni and Pd by Reflection Electron Energy-Loss Spectroscopy Spectra, 
H. Xu, B. Da, S.F. Mao, University of Science and Technology of China, J. 
Toth, K. Tokesi, Institute for Nuclear Research, Hungarian Academy of 
Sciences (ATOMKI), Zejun Ding, University of Science and Technology 
of China 
The energy loss function (ELF), which is directly related to optical 
constants of a solid, dominates the energy loss process of an electron 
moving inside or flying nearby a solid. It is therefore able to obtain optical 
constants by surface electron spectroscopy technique. Accurate 
measurement of optical data by optical methods in a photon energy range 
up to 102 eV is still insufficient; delicate experimental conditions are 
required when measuring data in vacuum ultraviolet region (20-50 eV). 
Fortunately, such information is essentially contained in and, therefore, can 
be extracted from a reflection electron energy loss spectroscopy (REELS) 
spectrum due to the shorter information depth of signal electrons compared 
with that of photons. 

In the present work, reflection electron energy loss spectra of transition 
metals, Fe, Ni and Pd, were measured at several primary energies ranging 
from 0.5 keV up to 5 keV and in a wide energy-loss range. Prior to the 
measurements in situ cleaning of the sample surface was performed using 
Ar+ ion sputtering with proper current density and time. Vacuum was kept 
as 1.5×10−9 mbar in the measurement chamber during the REELS 
measurements. Surface cleanness was checked by XPS in several cases after 
the REELS measurements. An improved reverse Monte Carlo simulation 
for determination of optical constants via accurate description of electron 
inelastic transport process was performed. ELF of those metals were 

extracted from experimental REELS spectra. The accuracy of the obtained 
optical data has been confirmed by f-sum and ps-sum rules. Comparisions 
of our data with other sources from either experimental measurements or 
density functional theory calculation are given. 
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