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8:00am  SP+AS+NS+SS-WeM1  Designer Electrons: Quantum 
Information and New Particles in Atomically Assembled Matter, Hari 
Manoharan, Stanford University INVITED 
The observation of massless Dirac fermions in monolayer graphene has 
propelled a new area of science and technology seeking to harness charge 
carriers that behave relativistically within solid-state materials. Using low-
temperature scanning tunneling microscopy and spectroscopy, we show the 
emergence of Dirac fermions in a fully tunable condensed-matter system—
molecular graphene—assembled via atomic manipulation of a conventional 
two-dimensional electron system in a surface state. We embed, image, and 
tune the symmetries underlying the two-dimensional Dirac equation into 
these electrons by sculpting the surface potential with manipulated 
molecules. By distorting the effective electron hopping parameters into a 
Kekulé pattern, we find that these natively massless Dirac particles can be 
endowed with a tunable mass engendered by the associated scalar gauge 
field, in analogy to the Higgs field. With altered symmetry and texturing of 
the assembled lattices, the Dirac fermions can be dressed with gauge 
electric or magnetic fields such that the carriers believe they are in real 
fields and condense into the corresponding ground state, as confirmed by 
tunneling spectroscopy. Using these techniques we ultimately fabricate a 
quantum Hall state without breaking time-reversal symmetry, in which 
electrons quantize in a gauge magnetic field ramped to 60 Tesla with zero 
applied laboratory field. We show that these and other chiral states now 
possible to realize have direct analogues in topological insulators, and can 
be used to guide or confine charge in nontrivial ways or to synthesize new 
particles [1,2]. 

[1] K. K. Gomes, W. Mar, W. Ko, F. Guinea, H. C. Manoharan, “Designer 
Dirac Fermions and Topological Phases in Molecular Graphene,” Nature 
483, 306–310 (2012). 

[2] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, V. Pellegrini, 
“Artificial Honeycomb Lattices for Electrons, Atoms, and Photons,” Nature 
Nanotechnology 8, 625–633 (2013).  

8:40am  SP+AS+NS+SS-WeM3  Scanning Quantum Dot Microscopy, 
Ruslan Temirov, C.W. Wagner, M.F.B.G. Green, P.L. Leinen, 
Forschungszentrum Juelich GmbH, Germany, T.D. Deilmann, P. Krueger, 
M.R. Rohlfing, Muenster University, Germany, F.S.T. Tautz, 
Forschungszentrum Juelich GmbH, Germany 
Interactions between atomic and molecular objects are to a large extent 
defined by the nanoscale electrostatic 

potentials which these objects produce. Consequently, a tool for nanometre 
scale imaging and quantification of 

local electrostatic fields could help in many areas of nanoscience research. 
In this contribution we introduce a 

scanning probe technique that for the first time enables truly three-
dimensional imaging of local electrostatic 

potential fields with sub-nanometre resolution. Registering single electron 
charging events of a molecular 

quantum dot attached to the tip of a tuning fork atomic force microscope 
operated at 5 K, we image the 

quadrupole field of a single molecule adsorbed on a metal surface. To 
demonstrate quantitative measurements, 

we investigate the Smoluchowski dipole field created by a single metal 
adatom adsorbed on a metal surface. We 

show that because of its high sensitivity the technique can probe 
electrostatic potentials at large distances from 

their sources, which should allow for the imaging of samples with increased 
surface roughness. 

Reference 

[1] C. Wagner, M. F. B. Green, P. Leinen, T. Deilmann, P. Krüger, M. 
Rohlfing, R. Temirov, F. S. Tautz 

arXiv:1503.07738 (2015) 

9:00am  SP+AS+NS+SS-WeM4  Local Probing of the Photo-carrier 
Lifetime by Kelvin Probe Force Microscopy, Nicolas Chevalier, S. 
Pouch, D. Mariolle, Univ. Grenoble Alpes/ CEA, LETI, MINATEC 
Campus, France, B. Grevin, Univ. Grenoble Alpes/ CEA, INAC, SPrAM, 
LEMOH, France, Ł. Borowik, Univ. Grenoble Alpes/ CEA, LETI, 
MINATEC Campus, France 
The photo-carrier lifetime plays a major role in the overall efficiency of a 
solar cell because it limits the proportion of photo-generated charges 
collected at the electrodes. This lifetime, which should be ideally as large as 
possible in an organic or inorganic solar cell, is rather difficult to measure 
in nanostructured materials or in more complex hybrid systems, indirect 
band-gap semiconductors, and ultra-thin layers. Identifying the losses 
mechanisms is one of the main objectives for increasing the performances 
of solar cells. Most of the experimental approaches developed so far consist 
in studying recombination by techniques such as transient photovoltage 
measurements or charge extraction. All these techniques average sample 
properties over macroscopic scales, making them unsuitable for directly 
assessing the impact of local heterogeneity on the recombination process. In 
this paper, we propose a steady method to measure the photo carrier lifetime 
by photo-modulated techniques based on Kelvin probe force microscopy 
(KPFM). [1] Additionally, KPFM technique provides a spatially resolved 
measurement, which is applicable on the overall of solar cells.  

We will present the principle of this original method based on the 
measurement of the surface potential by KPFM under an illumination with a 
rectangular waveform light modulation. Photo-carrier lifetime down to µs 
scale is reachable with our experimental setup. The modulation-dependent 
surface potential is plotted as a function of the frequency. Assuming an 
immediate generation time under illumination and an exponential decay of 
the surface potential during the dark condition, the averaged surface 
potential over a cycle can be fitted as a function of the frequency by simple 
equation where the only fit parameter is the photocarrier-lifetime. [2] 
Instrumental aspects as well as data treatment will be reviewed. 
Measurements obtained on silicon nanocrystals embedded in 30 nm film of 
silicon dioxide [3] and on organic donor-acceptor blend (PBTFB and 
PCBM) [4] will be presented to illustrate the potential of the technique.  

This work was supported by the French “Recherche Technologique de 
Base” Program and performed in the frame of the trSPV Nanoscience 
project. The measurements were performed on the CEA Minatec 
Nanocharacterization Platform (PFNC). 

1. Ł. Borowik et al. Phys. Rev. B 82, 073302 (2010). 

2. Ł. Borowik et al. Nanotechnology 25, 265703 (2014). 

3. D. Asakura et al. Phys. Rev. Lett. 93, 247006 (2004). 

4. N. Delbosc et al. RSC Adv 4, 15236 (2014). 

9:20am  SP+AS+NS+SS-WeM5  Nanoscale Capacitance-Voltage (C-V) 
Curves: Using Scanning Microwave Impedance Microscopy (sMIM) to 
Characterize Local Electrical Properties of Linear and Non-Linear 
Materials, Stuart Friedman, Y. Yang, O. Amster, PrimeNano, Inc. 
Understanding and optimizing advanced materials frequently requires 
detailed knowledge of nanoscale electrical properties. Scanning probe 
techniques such as scanning tunneling microscopy (STM), conductive AFM 
(cAFM), scanning capacitance microscopy (SCM), and Kelvin probe force 
microscopy (KPFM) provide such nano-electrical measurements, but are 
generally limited in the classes of materials they can characterize or the 
properties they can measure. Scanning microwave impedance microscopy 
(sMIM) uses GHz frequency microwaves and shielded AFM probes to 
directly measure the impedance (capacitance and conductance) of the tip 
sample interface. As such sMIM is sensitive to the permittivity and 
conductivity of a wide variety of samples including dielectrics, conductors, 
and semiconductors.  

When sMIM is applied to non-linear materials, changing the tip sample bias 
changes the local electric field thereby changing the local electrical 
properties of the sample just under the AFM tip. The electric field induced 
changes in the sample create changes in the tip-sample impedance that can 
be measured by sMIM. For example, when imaging doped semiconductor 
samples, the tip sample interface forms either a metal-semiconductor 
junction or a metal-insulator-semiconductor junction. Plotting the sMIM 
measured capacitance as a function of the tip sample bias voltage produces 
the equivalent of a typical capacitance-voltage curve, but from nanoscale 
regions selected from an AFM image. C vs V results from doped silicon 
samples that closely match theoretical calculations will be discussed. The 
talk will also present results from advanced and novel materials and 
devices, such as III-V semiconductors, 2D materials and 1D structures 
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where sMIM data has been used to assess non-linear behavior and 
characterize dopant type and distribution. 

9:40am  SP+AS+NS+SS-WeM6  STM Study of the Correlation between 
Structural, Magnetic, and Electronic Properties of Co Nano-Islands on 
Cu(111), Jewook Park, C. Park, M. Yoon, Z. Gai, A.P. Baddorf, A.-P. Li, 
Oak Ridge National Laboratory 
An epitaxially grown Co nano-island on Cu(111) surface is a model system 
to study the correlation between structural, magnetic, and electrical 
properties of nanophase materials. We carried out an extensive study on Co 
islands by using spin-polarized scanning tunneling microscopy and 
spectroscopy (SP-STM/S) at low temperatures (130 K and 38 K). Two 
structurally different island types are clearly distinguished, rotated by 180 
about the surface normal due to a stacking fault in one type of the islands. 
The triangular Co islands are 5-20 nm wide and 4 Å high. Regardless of the 
structural asymmetry, both faulted and un-faulted Co islands possess two 
distinctive spin orientations. With Cr-coated W-tip as a spin-polarized 
probe, bias-dependent tunneling conductance maps are measured on Co 
islands. An antiparallel spin-orientation between magnetized tip and Co 
islands display higher conductance compared to a parallel relation at -400 
meV and vice versa at around Fermi-level, which is verified by density 
functional theory calculations. Furthermore, by recording 23 hours of time-
lapse images from the same Co islands, we demonstrate a time-dependent 
correlation between structural, magnetic, and electrical behaviors. We find 
that a contamination-induced structural change modifies the magnetic 
properties of Co islands and is confirmed by theoretical calculations. 

This research was conducted at the Center for Nanophase Materials 
Sciences, which is a DOE Office of Science User Facility, and supported by 
the Laboratory Directed Research and Development Program of Oak Ridge 
National Laboratory, managed by UT-Battelle, LLC, for the US DOE. 

11:00am  SP+AS+NS+SS-WeM10  Probing Electrostatic Field Effect in 
Quantum Materials by Microwave Impedance Microscopy, Keji Lai, 
University of Texas at Austin INVITED 
The research of complex quantum materials, in which a dazzling number of 
emergent phenomena take place in the nanoscale, is a major theme in 
modern condensed matter physics. For real-space imaging of complex 
systems, electrical impedance microscopy fills an important void that is not 
well represented by the existing local probes. Using shielded cantilever 
probes and sensitive microwave electronics, we can now perform non-
invasive electrical imaging with sub-100nm resolution and sub-aF 
sensitivity.  

Combining the cryogenic microwave impedance microscopy (MIM) and a 
spin-coated thin ionic gel layer, we are able to visualize the metal-insulator 
transition of functional materials in electrolyte-gated electric double-layer 
transistors. The microwave images acquired at different gate voltages 
clearly show the spatial evolution of channel conductivity and its local 
fluctuations through the transition. By applying a large source-drain bias 
above the glass transition temperature of the gel, an uneven conductance 
profile is established across the EDLT channel, which can be visualized by 
the MIM and further investigated by transport measurements and numerical 
simulations. The combination of ultra-thin ion-gel gating and microwave 
microscopy paves the way for studying the microscopic evolution of phase 
transitions in complex materials induced by electrostatic field effects. 

11:40am  SP+AS+NS+SS-WeM12  Subsurface Visualization of Soft 
Matrix using 3D-Spectroscopic Atomic Force Acoustic Microscopy, 
Kuniko Kimura, K. Kobayashi, A. Yao, H. Yamada, Kyoto University, 
Japan 
Nondestructive visualization of subsurface features of various materials 
with nanometer-scale spatial resolution is strongly demanded in a wide 
variety of scientific research fields such as nanoelectronics, nanomechanics 
and life science. Recently, many research groups have demonstrated the 
visualization of nanometer-scale subsurface features using various 
techniques based on atomic force microscopy (AFM) [1-4]. (All references 
and figures are given in Supplement.) We recently demonstrated the 
imaging of Au nanoparticles buried under 900 nm from the surface of a 
polymer matrix by atomic force acoustic microscopy (AFAM), as shown in 
Fig. 1 [5]. In AFAM, the amplitude and phase of the cantilever vibration at 
the contact resonance frequency induced by the sample excitation are 
measured, which allows us the quantitative evaluation of surface stiffness 
[6]. The AFAM images in Fig. 1 show that the surface viscoelasticity of the 
soft matrix is affected by subsurface hard objects such as the Au 
nanoparticles buried even roughly 1 micro-meter below the surface. 
However, only from AFAM images, it is difficult to determine which the 
dominant mechanism for the subsurface imaging is viscosity variation or 
elasticity variation, because AFAM images were taken at a single excitation 
frequency near contact resonance.  

In this presentation, we discuss the origin of the visualization of subsurface 
features in soft matrix based on spectroscopy of AFAM [7]. We recorded 
the amplitude and phase spectra at every pixel of the AFAM image as 
represented in Fig. 2, which we call 3-dimensional spectroscopic atomic 
force acoustic microscopy (3D-spectroscopic AFAM). A schematic diagram 
of the 3D-spectroscopic AFAM is shown in Fig. 3. After the tip was 
brought into contact with the surface, we first measured the contact 
resonance frequency (fc). Then we recorded the amplitude and phase 
spectra measured by a lock-in amplifier, while the tip was raster-scanned 
with the contact mode. At each scanning pixel, the excitation frequency was 
swept with the span of 25 kHz which was centering around fc, whose sweep 
time was 35 msec. The total acquisition time for 128 x 128 pixels took 
about 20 min.  

Using this method, we can compare the frequency spectrum measured on 
the subsurface Au nanoparticle with that on another position having no 
subsurface particle, as shown in Fig. 4. We can also reconstruct AFAM 
images of arbitrary frequencies within the sweep frequency range, which is 
the meaning of “3-dimensional”. Moreover, the 3D-spectroscopic AFAM 
enables us to characterize the amplitude and phase spectra and to detect the 
variation that may be caused by the nonlinear tip-sample interactions.  

12:00pm  SP+AS+NS+SS-WeM13  Quantifying the Effects of Cantilever 
Modes Shapes on Studies of the Liquid-Solid Interface, Aleks Labuda, 
M. Viani, D. Walters, R. Proksch, Asylum Research, an Oxford Instruments 
company 
At the core of most AFM measurements is the assumption that the motion 
of the cantilever probe can be well quantified. However, most AFM systems 
use a “beam bounce” optical beam deflection (OBD) method which, 
because it is fundamentally an angular measurement, only provides accurate 
tip position information when the mode shape of the cantilever matches the 
calibration conditions. For example, if the OBD sensitivity is calibrated 
with a force curve, the calibration holds true only for experiments where the 
mode shape is similar to an end-loaded cantilever. This assumption is 
quickly violated when the cantilever is oscillated at frequencies different 
from the calibration. This is especially true in liquids, where Q~1 and the 
combination of significant base motion and hydrodynamic effects lead to a 
variety of different mode shapes that are strongly frequency dependent (see 
Figure). This clearly demonstrates that the sensitivity (nm/V) is actually a 
frequency dependent quantity. Worse, it may also drift with time. Another 
consequence is that the effective stiffness of the cantilever, which depends 
on mode shape, is also highly frequency dependent. Both of these effects 
cause quantitative misinterpretation of the tip-sample interaction and 
artifacts in imaging contrast. These problems affect both dynamic AFM 
modes (such as AM-AFM and FM-AFM) as well as sub-resonance modes 
such as fast force mapping and force modulation.  

To quantify this effect, we present measurements based on Ref [1-2] using a 
modified commercial AFM that combines a standard OBD detector with an 
integrated laser Doppler vibrometer (LDV) system that directly measures 
displacement. As shown in the Figure, The OBD and LDV can be used 
simultaneously, such that the cantilever base motion or tip motion can be 
accurately monitored with the LDV during an AFM experiment – 
independent of the OBD and any feedback loops. In the Figure, the ~2 µm 
LDV laser spot was scanned along the cantilever for high-resolution in situ 
mapping of its dynamics across a wide spectrum of frequencies and 
showing significant deviations from ideal mode shapes over the entire 
frequency range. 

The effects of these frequency-dependent mode shapes are then quantified 
by appropriate modeling for a variety of experimental conditions, and 
demonstrated experimentally using stiff levers for AM-AFM at the calcite-
water interface and soft levers for fast force mapping of polymeric 
materials.  



 3 Author Index 

Authors Index 
Bold page numbers indicate the presenter 

—	A	— 
Amster, O.: SP+AS+NS+SS-WeM5, 1 

—	B	— 
Baddorf, A.P.: SP+AS+NS+SS-WeM6, 2 
Borowik, Ł.: SP+AS+NS+SS-WeM4, 1 

—	C	— 
Chevalier, N.: SP+AS+NS+SS-WeM4, 1 

—	D	— 
Deilmann, T.D.: SP+AS+NS+SS-WeM3, 1 

—	F	— 
Friedman, S.L.: SP+AS+NS+SS-WeM5, 1 

—	G	— 
Gai, Z.: SP+AS+NS+SS-WeM6, 2 
Green, M.F.B.G.: SP+AS+NS+SS-WeM3, 1 
Grevin, B.: SP+AS+NS+SS-WeM4, 1 

—	K	— 
Kimura, K.: SP+AS+NS+SS-WeM12, 2 
Kobayashi, K.: SP+AS+NS+SS-WeM12, 2 
Krueger, P.: SP+AS+NS+SS-WeM3, 1 

—	L	— 
Labuda, A.: SP+AS+NS+SS-WeM13, 2 
Lai, K.: SP+AS+NS+SS-WeM10, 2 
Leinen, P.L.: SP+AS+NS+SS-WeM3, 1 
Li, A.-P.: SP+AS+NS+SS-WeM6, 2 

—	M	— 
Manoharan, H.C.: SP+AS+NS+SS-WeM1, 1 
Mariolle, D.: SP+AS+NS+SS-WeM4, 1 

—	P	— 
Park, C.: SP+AS+NS+SS-WeM6, 2 
Park, J.: SP+AS+NS+SS-WeM6, 2 
Pouch, S.: SP+AS+NS+SS-WeM4, 1 
Proksch, R.: SP+AS+NS+SS-WeM13, 2 

—	R	— 
Rohlfing, M.R.: SP+AS+NS+SS-WeM3, 1 

—	T	— 
Tautz, F.S.T.: SP+AS+NS+SS-WeM3, 1 
Temirov, R.T.: SP+AS+NS+SS-WeM3, 1 

—	V	— 
Viani, M.: SP+AS+NS+SS-WeM13, 2 

—	W	— 
Wagner, C.W.: SP+AS+NS+SS-WeM3, 1 
Walters, D.: SP+AS+NS+SS-WeM13, 2 

—	Y	— 
Yamada, H.: SP+AS+NS+SS-WeM12, 2 
Yang, Y.: SP+AS+NS+SS-WeM5, 1 
Yao, A.: SP+AS+NS+SS-WeM12, 2 
Yoon, M.: SP+AS+NS+SS-WeM6, 2 

 


