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In situ Imaging of Liquids using Microfluidics 
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Laboratory, Stephen Nonnenmann, University of 
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2:20pm  IS+SS+NS+BI+VT+MN+AS-WeA1  In Situ Multimodal 
Biological Imaging using Micro- and Nanofluidic Chambers, James 
Evans, C. Smallwood, Pacific Northwest National Laboratory INVITED 
Biological organisms have evolved a number of spatially localized and 
highly orchestrated mechanisms for interacting with their environment. 
Since no single instrument is capable of probing the entire multidimensional 
landscape, it is not surprising that one of the grand challenges in biology 
remains the determination of how dynamics across these scales lead to 
observed phenotypes.  

Therefore, there is a need for in-situ correlative multimodal and multiscale 
imaging to fully understand biological phenomena and how chemical or 
structural changes at the molecular level impact the whole organism. We 
have been advancing new methods for both cryogenic and in-situ 
correlative analysis of biological samples using electron, ion, optical and x-
ray modalities. Central to this work is the development of new micro- and 
nanofluidic chambers that enable in-situ observations within precisely 
controlled liquid-flow environments. In this talk I will review the design of 
these new chambers, highlight current science applications and outline our 
future goals for adding additional functionality and expanding the versatility 
of the devices to other disciplines.  

3:00pm  IS+SS+NS+BI+VT+MN+AS-WeA3  Glyoxal Aqueous Surface 
Chemistry by SALVI and Liquid ToF-SIMS, Xiao Sui, Y. Zhou, Z. Zhu, 
Pacific Northwest National Laboratory, J. Chen, Shandong University, 
China, X.-Y. Yu, Pacific Northwest National Laboratory 
Glyoxal, a ubiquitous water-soluble gas-phase oxidation product in the 
atmosphere, is an important source of oxalic acid, a precursor to aqueous 
secondary organic aerosol (SOA) formation. Many recent laboratory 
experiments and field observations suggest that more complex chemical 
reactions can occur in the aqueous aerosol surface; however, direct probing 
of aqueous surface changes is a challenging task using surface sensitive 
techniques. The ability to map the molecular distribution of reactants, 
reaction intermediates, and products at the aqueous surface are highly 
important to investigate surface chemistry driven by photochemical aging. 
In this study, photochemical reactions of glyoxal and hydrogen peroxide 
(H2O2) were studied by a microfluidic reactor, System for Analysis at the 
Liquid Vacuum Interface (SALVI), coupled with Time-of-Flight Secondary 
Ion Mass Spectrometry (ToF-SIMS). Aqueous surfaces containing glyoxal 
and hydrogen peroxide were exposed to UV light at variable lengths of time 
and were immediately analyzed in the SALVI microchannel by in situ 
liquid ToF-SIMS. In addition, various control samples were conducted to 
ensure that our findings were reliable. Compared with previous results of 
bulk solutions using ESI-MS, our unique liquid surface molecular imaging 
approach provided observations of glyoxal hydrolysis (i.e., first and 
secondary products, dimers, trimers, and other oligomers) and oxidation 
products (i.e., glyoxylic acid, oxalic acid and formic acid) with sub-
micrometer spatial resolution. We potentially provide a new perspective and 
solution to study aqueous surface chemistry as an important source of 
aqueous SOA formation of relevance to atmospheric chemistry known to 
the community. 

3:20pm  IS+SS+NS+BI+VT+MN+AS-WeA4  Investigating Shewanella 
Oneidensis Biofilm Matrix in a Microchannel by In Situ Liquid ToF-
SIMS, Yuanzhao Ding, Nanyang Technological University, Singapore, X. 
Hua, Y. Zhou, J. Yu, X. Sui, J. Zhang, Z. Zhu, Pacific Northwest National 
Laboratory, B. Cao, Nanyang Technological University, Singapore, X.-Y. 
Yu, Pacific Northwest National Laboratory 
Biofilms consist of a group of micro-organisms attached onto surfaces or 
interfaces and embedded with a self-produced extracellular polymeric 
substance (EPS) in natural environments. The EPS matrix, like the “house 
of the cells”, provides bacteria cells with a more stable environment and 
makes them physiologically different from planktonic cells. Shewanella 
oneidensis MR-1 is a metal-reducing bacterium, forming biofilms that can 
reduce toxic heavy metals. This capability makes S. oneidensis biofilms 
very attractive in environmental applications. To better understand the 
biofilm EPS matrix composition at the interface, in situ chemical imaging 

with higher spatial resolution and more molecular level chemical 
information is strongly needed. Traditionally, electron microscopy and 
fluorescence microscopy are common imaging tools in biofilm research. 
However, the bottlenecks in these imaging technologies face the limitations 
that it is difficult for them to provide chemical information of small 
molecules (e.g., molecule weight <200). In this study, we use an emerging 
technology liquid Time-of-Flight Secondary Ion Mass Spectrometry (ToF-
SIMS) to observe S. oneidensis biofilm cultured in a vacuum compatible 
microchannel of the System for Analysis at the Liquid Vacuum Interface 
(SALVI) device. Chemical spatial distributions of small organic molecules 
that are considered to be the main building components of EPS in live 
biofilms are obtained. Principal component analysis is used to determine 
differences among biofilms sampled along the microchannel. This new 
approach overcomes previous limitations in live biofilm analysis and 
provides more chemical information of the EPS relevant to biofilm 
formation. Better understanding of the biofilm matrix will potentially fill in 
the knowledge gap in biofilm surface attachment and detachment processes 
and improve the engineering and design of S. oneidensis biofilms with high 
efficiencies in heavy metal reduction. 

4:20pm  IS+SS+NS+BI+VT+MN+AS-WeA7  Ultrafast Proton and 
Electron Dynamics in Core-Level Ionized Aqueous Solution, Bernd 
Winter, Helmholtz-Zentrum Berlin für Materialien und 
Energie/Elektronenspeicherring BESSY II, Germany INVITED 
Photo- and Auger electron spectroscopy from liquid water reveals a novel 
electronic de-excitation process of core-level ionized water in which a pair 
of two cations forms, either H2O+·H2O+ or OH+·H3O+. These reactive 
species are the delocalized analogue to H2O2+, formed in a localized on-site 
Auger decay, and are expected to play a considerable role in water radiation 
chemistry. Both cationic pairs form upon autoionization of the initial 
ionized water molecule, and we are particularly interested in the situation 
where autoionization occurs from a structure that evolves from proton 
transfer, from the ionized water molecule to a neighbor molecule, within a 
few femtoseconds. The actual autoionization is either through 
intermolecular Coulombic decay (ICD) or Auger decay. Experimental 
identification of the proton dynamics is through isotope effects. A question 
that arises is whether such so-called proton-transfer mediated charge 
separation (PTM-CS) processes occur in other and similarly hydrogen-
bonded solute molecules as well. This is indeed the case, and is illustrated 
here for ammonia and glycine in water, as well as for hydrogen peroxide in 
water, where characteristic differences are detected in the Auger-electron 
spectra from the light versus heavy species, i.e., NH3 in H2O versus ND3 in 
D2O, glycine(H) in H2O versus glycine(D) in D2O, and H2O2 in H2O versus 
D2O2 in D2O. The important spectral feature here is the high-kinetic energy 
tail of the Auger spectrum, which has no gas-phase analogue, and hence 
reflects the participation of solvent water in the relaxation process. The 
probability of the proton dynamics, judged from the intensities of the 
electron signal and inferred from methods of quantum chemistry and 
molecular dynamics, is found to depend on hydrogen-bond strength and 
hence on the specific hydration configuration. Favorable configurations for 
hydrogen peroxide(aq) occur due to the molecule’s flexible structure. In 
ammonia(aq) the PTM processes are found to be less probable than for 
water(aq), which is attributed to the planarization of the ammonia molecule 
upon core-level ionization. The effect is smaller for the neutral –NH2(aq) 
group of glycine at basic pH, where intramolecular dynamics is less likely. 
Nature and chemical reactivity of the initial transient species and their role 
for radiation chemistry and for local reactions relevant for biological 
molecules in an aqueous environment are discussed for the different 
molecular hydrogen-bonded systems. 

5:00pm  IS+SS+NS+BI+VT+MN+AS-WeA9  Water Dissociation in 
Metal Organic Frameworks with Coordinatively Unsaturated Metal 
Ions: MOF-74, Kui Tan, The University of Texas at Dallas, S. Zuluaga, 
Wake Forest University, E. Fuentesf, The University of Texas at Dallas, H. 
Wang, Rutgers University, P. Canepa, Wake Forest University, J. Li, 
Rutgers University, T. Thonhauser, Wake Forest University, Y.J. Chabal, 
The University of Texas at Dallas 
Water dissociation represents one of the most important reactions in 
catalysis, essential to the surface and nano sciences. However, the 
dissociation mechanism on most oxide surfaces is not well understood due 
to the experimental challenges of preparing surface structures and 
characterizing reaction pathways. To remedy this problem, we propose the 
metal organic framework MOF-74 as an ideal model system to study water 
reactions. Its crystalline structure is well characterized; the metal oxide 
node mimics surfaces with exposed cations; and it degrades in water. 
Combining in situ IR spectroscopy and first-principles calculations, we 
explored the MOF-74/water interaction as a function of vapor pressure and 
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temperature. Here, we show that, while adsorption is reversible below the 
water condensation pressure (~19.7 Torr) at room temperature, a reaction 
takes place at ~150 ˚C even at low water vapor pressures. This important 
finding is unambiguously demonstrated by a clear spectroscopic signature 
for the direct reaction using D2O, which is not present using H2O due to 
strong phonon coupling. Specifically, a sharp absorption band appears at 
970 cm-1 when D2O is introduced at above 150 ˚C, which we attribute to an 
O-D bending vibration on the phenolate linker. Although H2O undergoes a 
similar dissociation reaction, the corresponding O-H mode is too strongly 
coupled to MOF vibrations to detect. In contrast, the O-D mode falls in the 
phonon gap of the MOF and remains localized. First-principles calculations 
not only positively identify the O-D mode at 970 cm-1 but derive a pathway 
and kinetic barrier for the reaction and the final configuration: the D (H) 
atom is transferred to the oxygen of the linker phenolate group, producing 
the notable O-D absorption band at 970 cm-1,while the OD (or OH) binds to 
the open metal sites. Experimental data and theoretical modeling further 
shows that the reaction is facilitated by a cooperative effect of several H2O 
molecules. This finding explains water dissociation in this case and 
provides insight into the long-lasting question of MOF-74 degradation. 
Overall, it adds to the understanding of molecular water interaction with 
cation-exposed surfaces to enable development of more efficient catalysts 
for water dissociation. 

Ref: K. Tan, S. Zuluaga, Q. Gong, P. Canepa, H. Wang, J. Li, Y. J. Chabal 
and T. Thonhauser, Chem. Mater., 2014, 26, 6886-6895. 

5:20pm  IS+SS+NS+BI+VT+MN+AS-WeA10  Competitive Co-
Adsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in 
M-MOF-74 (M= Mg, Co, Ni): The Role of Hydrogen Bonding, K. Tan, 
The University of Texas at Dallas, Sebastian Zuluaga, Wake Forest 
University, H. Wang, Rutgers University, Y. Gao, The University of Texas 
at Dallas, J. Li, Rutgers University, T. Thonhauser, Wake Forest University, 
Y.J. Chabal, The University of Texas at Dallas 
The importance of co-adsorption for applications of porous materials in gas 
separation has motivated fundamental studies, which have initially focused 
on the comparison of the binding energies of different gas molecules in the 
pores (i.e. energetics) and their overall transport. By examining the 
competitive co-adsorption of several small molecules in M-MOF-74 (M= 
Mg, Co, Ni) with in-situ infrared spectroscopy and ab initio simulations, we 
find that the binding energy at the most favorable (metal) site is not a 
sufficient indicator for prediction of molecular adsorption and stability in 
MOFs. Instead, the occupation of the open metal sites is governed by 
kinetics, whereby the interaction of the guest molecules with the MOF 
organic linkers controls the reaction barrier for molecular exchange. 
Specifically, the displacement of CO2 adsorbed at the metal center by other 
molecules such as H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 is mainly 
observed for H2O and NH3, even though SO2, NO, and NO2, have higher 
binding energies (~70-90 kJ/mol) to metal sites than that of CO2 (38 to 48 
kJ/mol) andslightly higher than water (~60-80 kJ/mol). DFT simulations 
evaluate the barriers for H2OàCO2 and SO2àCO2 exchange to be ~ 13 and 20 
kJ/mol, respectively, explaining the slow exchange of CO2 by SO2, 
compared to water. Furthermore, the calculations reveal that the kinetic 
barrier for this exchange is determined by the specifics of the interaction of 
the second guest molecule (e.g., H2O or SO2) with the MOF ligands. 
Hydrogen bonding of H2O molecules with the nearby oxygen of the organic 
linker is found to facilitate the positioning of the H2O oxygen atom towards 
the metal center, thus reducing the exchange barrier. In contrast, SO2 
molecules interact with the distant benzene site, away from the metal center, 
hindering the exchange process. Similar considerations apply to the other 
molecules, accounting for much easier CO2 exchange for NH3 than for NO, 
NO2, CH4, O2, and N2 molecules. In this work, critical parameters such as 
kinetic barrier and exchange pathway are first unveiled and provide insight 
into the mechanism of competitive co-adsorption, underscoring the need of 
combined studies, using spectroscopic methods and ab initio simulations to 
uncover the atomistic interactions of small molecules in MOFs that directly 
influence co-adsorption. 

Ref: K. Tan, S. Zuluaga, Q. Gong, Y. Gao, N. Nijem, J. Li, T. Thonhauser 
and Y. J. Chabal, Chem. Mater., 2015, 27, 2203-2217. 

6:00pm  IS+SS+NS+BI+VT+MN+AS-WeA12  In Situ STM Observation 
of Pd(110) Under the Hydrogen Pressure Between 10-6 Pa and 10-3 Pa, 
Jun Yoshinobu, H. Kikuchi, T. Koitaya, K. Mukai, S. Yoshiomoto, 
University of Tokyo, Japan 
Hydrogen adsorption and absorption on/in Pd and Pd alloys are vital 
processes for the hydrogen storage and hydrogen permeation materials. We 
investigated the Pd(110) surface under the hydrogen pressures between 10-6 
Pa and 10-3 Pa at room temperature using in-situ atom-resolved scanning 
tunneling microscopy (STM). We observed missing-atom, missing-row and 
added-row structures and the number of atoms in these structures were 
quantitatively analyzed as a function of exposure time. Note that adatoms 
were not detected probably because they were mobile in the present 

experimental conditions. At 10-6 Pa, the numbers of missing-row and added-
row atoms increased up to ~20 L (langmuir) and after that they were 
gradually reaching the saturation (steady-state). On the other hand, the 
number of missing-atoms decreased gradually from the initial stage. With 
increasing the hydrogen pressures the number of missing-row atoms and 
added-row atoms increased, and the whole surface was covered with these 
reconstructed structures after large exposures (>1000 L). It has been known 
that not only hydrogen adsorption but also hydrogen absorption occur in 
such conditions. Thus, the missing-row and added-row reconstructed 
structures are inevitable for hydrogen absorption on Pd(110). 
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