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8:20am  EM+NS+PS-MoM1  Effects of Deposition Temperature and 
Pre-rapid Thermal Process on Electrical and Interfacial 
Characteristics of Alumina on GaSb, Seongkyung Kim, H.J. kim, Seoul 
National University, Korea, Republic of Korea 
Recently Ⅲ-Ⅴ compound materials have attracted significant attention as 
promising channel materials for sub-10 nm logic MOSFET due to their high 
mobility. GaSb is a strong candidate for pMOSFETs because of its high 
hole mobility in addition to the insolubility of its native oxides. Even with 
the outstanding electrical properties of GaSb, there are some drawbacks 
related to the instability of its native oxides and metallic layer of elemental 
Sb. The native oxides and metallic layer of elemental Sb are considered to 
be sources of Fermi level pinning and flat C-V curves. Therefore, it is 
necessary to improve surface treatment methods. Since it is possible to 
eliminate its native oxides and elemental Sb by heating them, it is essential 
to research temperature related surface treatments. 

In this study, various ALD temperatures from 190 oC to 310 oC and pre-
RTP(Rapid Thermal Process), which is first introduced here as a pre-
deposition treatment, have been adopted for eliminating the remaining 
native oxides after cleaning. N2 gas atmosphere is used to suppress the 
oxygen to interact with GaSb surface for the pre-RTP. GaSb metal-oxide-
semiconductor capacitors were fabricated on p-type GaSb, which has a 
carrier concentration of 1.0~2.0 x 1017 cm-3. GaSb was degreased with 
acetone, ethanol, and isopropane for 5 minutes each and then etched by 
HCl. 10 nm of Al2O3 has been deposited as a gate dielectric with TMA and 
DI water by thermal ALD. For the metal gate, a Pt electrode has been 
deposited with an electron-beam evaporator. 

When the deposition temperature increases, the Ga2O3 peak increases and 
the substrate peak decreases under XPS analysis. It is observed that the 
amount of Sb increases at the GaSb/Al2O3 interface as the deposition 
temperature increases in AES depth profiles. Both Ga2O3 and elemental Sb 
have increased generation as the deposition temperature increases, since the 
surface chemical reactions are accelerated by increased temperature. The 
CV curve becomes flat as the deposition temperature increases. It indicates 
that Ga2O3 has a flattening effect of the CV curve and the more amount of 
Ga2O3 that is generated, the flatter the CV curve will become. 

Desorption of the native oxides and elemental Sb should occur by annealing 
the substrate. After the pre-RTP, the amount of elemental Sb increases, 
since the remaining native oxide, after cleaning, is reduced by increased 
temperatures. The remaining native oxide Sb2O3, after cleaning, supplies 
oxygen to the substrate and becomes elemental Sb. The leakage current 
increases with pre-RTP. It shows that the elemental Sb increases the 
leakage current. Further study on optimizing pre-RTP conditions is needed. 

8:40am  EM+NS+PS-MoM2  Selective Wet Etching of III-V 
Semiconductors with HCl and H2O2, Pablo Mancheno-Posso, . Jain, A.J. 
Muscat, University of Arizona 
The etching of III-V semiconductors is needed to insert these materials into 
current device flows to extend CMOS transistor technology. III-V oxides 
are detrimental to electrical performance and must be removed, because 
they adopt different oxidation states and can be soluble in water. Plasma 
etching to create profiles can damage and change the stoichiometry of the 
surface. Wet etching of these oxides can control the roughness and chemical 
termination of the surface by choice of oxidant and etchant, concentration, 
and pH. Wet etching of III-V semiconductors is accomplished by oxidizing 
acid and base chemistries that can preferentially remove group III or V 
atoms. In new 3 D transistor architectures, the formation of the channel fin 
requires a low etching rate to ensure a smooth surface and a highly selective 
etching bath with respect to other materials or crystal faces that are exposed. 
In this work, we varied the group III and V atoms across five binaries 
(GaAs, InAs, InP, GaSb, and InSb) and measured etching rates. These 
materials were etched using mixtures of HCl (0.01 M) and H2O2 (0.0001-5 
M). The etching rate was measured using profilometry on wafers patterned 
with conventional photolithography. The chemical composition was 
monitored using X-ray photoelectron spectroscopy (XPS). The etching rate 
of GaAs and InAs (same group V atom) exhibited a volcano-shaped 
dependence on H2O2 concentration. At H2O2 concentrations of 5 to 100 

mM, the etching rate increased linearly from 0.08±0.03 to 1.1±0.1 nm/s for 
GaAs and from 0.06±0.04 to 0.9±0.3 nm/s for InAs. The rate decreased to 
0.04±0.01 nm/s for GaAs and 0.26±0.13 nm/s for InAs at 1 M H2O2. InP, 
which is often exposed during etching of another III-V, showed a linear 
dependence on H2O2 concentration (0.01 to 5 M), increasing from 
0.003±0.001 to 0.012±0.009 nm/s. The selectivity of etching GaAs to InP at 
three points along the volcano was about 55, 140, and 4 at H2O2 

concentrations of 0.01, 0.1, and 1 M. Like the arsenides, the antimonides 
etched at about the same rate, but the volcano dependence moved to lower 
peroxide concentrations. The etching rate of GaSb increased from 
0.07±0.04 to 0.21±0.04 nm/s and InSb from 0.09±0.03 to 0.38±0.09 nm/s 
for H2O2 concentrations from 0.1 to 1 mM. The group V atom determined 
the etching rate and is involved in the rate determining step in the reaction. 
The presence of As-Cl bonds on the surface after etching GaAs in HCl was 
confirmed by temperature programmed desorption (TPD) experiments after 
immersion in 1.7 M HCl. The mechanism for etching III-V semiconductors 
will be discussed based on the etching rate data and chemical composition 
of the surface. 

9:00am  EM+NS+PS-MoM3  Border Trap Analysis and Reduction for 
ALD High-k InGaAs Gate Stacks, Kechao Tang, Stanford Univ., R. 
Winter, Technion – Israel Inst. of Tech., T. Kent, UC, San Diego, M. 
Negara, Stanford Unive., R. Droopad, Texas State Univ., A.C. Kummel, 
UC, San Diego, M. Eizenberg, Technion – Israel Inst. of Tech., P. McIntyre, 
Stanford Univ. 
For future high performance III-V n-channel MOS devices, In0.53Ga0.47As is 
a promising material for the channel due to its high electron mobility. 
Atomic layer deposited (ALD) Al2O3 has a large conduction band offset to 
InGaAs and can form a low defect-density interface with InGaAs [1]. ALD-
HfO2 can achieve a very low EOT (effective oxide thickness) with low gate 
leakage [2]. Therefore, both of these oxides have received extensive 
attention as candidate dielectric layers for InGaAs nMOSFETs. Apart from 
the well-known oxide/InGaAs interface charge traps that may pin the Fermi 
level of the channel, traps in the oxide layer, called border traps, may also 
reduce the charge in the channel and thus degrade the on-state performance 
of InGaAs MOSFET devices. We report a study of the effects of various 
approaches to reduce the density of border traps (Nbt), such as variation of 
the ALD temperature, and of post-gate metal forming gas (5% H2/95% N2) 
anneal (FGA) conditions. 

Experimental methods employed include quantitative interface trap and 
oxide trap modeling [3, 4] of MOS capacitor data obtained over a range of 
frequencies and temperatures. We find that MOS capacitors fabricated using 
trimethylaluminum (TMA)/H2O at an ALD temperature of 120°C have a 
considerably lower border trap density while maintaining a low interface 
trap density (Dit) compared to samples prepared with a more standard 270°C 
Al2O3 ALD temperature. It is also found that large-dose (~6,000 L) 
exposure of the In0.53Ga0.47As (100) surface to TMA immediately after 
thermal desorption of a protective As2 capping layer in the ALD chamber is 
an important step to guarantee the repeatability of high quality 
Al2O3/InGaAs samples made at Al2O3 ALD temperatures much lower than 
270°C. The reduction of Nbt is consistent with time-of-flight secondary ion 
mass spectrometry depth profiles that show more effective hydrogen 
incorporation in the low-temperature ALD-grown Al2O3 films during post-
gate FGA.  

The Nbt of Al2O3 under various conditions will be compared with that of 
low-temperature ALD-grown HfO2 films on InGaAs substrates. For the 
HfO2 case, we also confirm the independence of border trap response on the 
electrical measurement temperature and check the influence of the crystal 
orientation of the InGaAs surface on MOS interface characteristics.  

This work was supported by the US-Israel Binational Science Foundation. 
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9:20am  EM+NS+PS-MoM4  Self-LIMITING CVD of an Air Stable 
Silicon Oxide Bilayer for Preparation of Subsequent Silicon or Gate 
Oxide ALD on InGaAs(001)-(2x4), Mary Edmonds, T. Kent, S. Wolf, 
University of California at San Diego, J. Kachian, N. Yoshida, M. Chang, 
Applied Materials, D. Alverez, Rasirc, Inc, R. Droopad, Texas State 
University, A.C. Kummel, University of California at San Diego 
A broader range of channel materials allowing better carrier confinement 
and mobility could be employed if a universal control monolayer (UCM) 
could be ALD or self-limiting CVD deposited on multiple materials and 
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crystallographic faces. Si-OH is a leading candidate for use as the UCM, as 
silicon uniquely bonds strongly to all crystallographic faces of InGa1-xAs, 
InxGa1-xSb, InxGa1-xN, SiGe, and Ge enabling transfer of substrate dangling 
bonds to silicon, which may then subsequently be functionalized with an 
oxidant such as HOOH(g) in order to create the UCM terminating Si-OH 
layer. This study focuses on depositing a saturated Si-OH seed layer on 
InGaAs(001)-(2x4) at a substrate temperature of 350°C. XPS in 
combination with STS/STM were employed to characterize the electrical 
and surface properties of the saturated Si-OH seed layer on InGaAs(001)-
(2x4).  

The 350°C self-limiting CVD procedure includes a decapped 
In0.53Ga0.47As(001)-(2x4) surface dosed with total 87.6 MegaLangmuir 
Si2Cl6 followed by 210.55 MegaLangmuir total anhydrous HOOH(g). 
Complete saturation of silicon coverage is determined to occur once further 
dosing with Si2Cl6 leads to no further increase in the silicon 2p or further 
decrease in the substrate gallium 3p peak areas. Complete surface saturation 
of Si-Ox on InGaAs(001)-(2x4) was determined to occur once no further 
increase in the O 1s peak was seen with additional anhydrous HOOH(g) 
doses. Following Si-OH surface saturation, 300,000 L TMA was dosed at 
250°C, and XPS shows the emergence of Al 2p and C 1s peaks indicative of 
TMA surface nucleation. The surface was then dosed with 500 L atomic H 
at 250°C to remove the methyl groups on the surface aluminum and replace 
with -H termination as well as remove any residual chlorine left on the 
surface. The surface was then exposed to air for 30 minutes, dosed with an 
additional 500 L atomic H at 250°C, and then STS measurements were 
performed. STM measurements of the Si-Ox surface show uniform surface 
coverage. STS measurements show the surface Fermi level position moves 
towards midgap due to a surface dipole formation from –OH groups and 
oxygen bonding to the surface. TMA dosed on the Si-Ox surface shifts the 
Fermi level back towards the conduction band, consistent with unpinning 
and the -OH induced surface dipole being lessened through surface bonding 
with dimethylaluminum groups. Following hydrogen dosing and air 
exposure, the surface Fermi level remains near the conduction band edge 
consistent with the surface being stable and unreactive in air. Preliminary 
MOSFET studies on InGaAs(001) show equivalent performance with Si2Cl6 
predosing compared to in-situ cleaning with atomic H. 

9:40am  EM+NS+PS-MoM5  Going Big in Two-Dimensions, Joshua 
Robinson, The Pennsylvania State University INVITED 
The last decade has seen nearly exponential growth in the science and 
technology of two-dimensional materials. Beyond graphene, there are a 
variety of layered materials that provide a broad range of electronic 
characteristics useful for transistors, flexible electronics, sensors, and 
photodetectors, to name a few. However, bridging the gap between science 
and teechnology often lies in one’s ability to synthesize materials on the 
wafer scale (or bigger). In this talk, I will discuss recent breakthroughs for 
direct growth of two-dimensional atomic layers and heterostructures with 
scalable techniues such as metal-organic chemical vapor deposition. We 
have demonstrated the direct growth of MoS2, WSe2, MoS2/WSe2, and hBN 
on epitaxial graphene to form large area van der Waals heterostructures. We 
reveal that the properties of the underlying substrate dictate properties of the 
layers and heterostructures, and that the direct synthesis of TMDs on 
epitaxial graphene exhibits atomically sharp interfaces. Our work has lead 
to a better understanding of vertical transport in 2D heterostructures, and we 
have identified new phenomenon in multi-junction heterostructures that has 
lead to resonance tunneling between layers and ultimately negative 
differential resistance. 
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3. M. S. Bresnehan, G. Bhimanapati, K. Wang, D.Snyder, J.A.Robinson; 
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(2014) 
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ellipsometry; APL Materials 2 (9), 092508 
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ACS Nano 8 (4), 3715-3723 (2014) 

10:40am  EM+NS+PS-MoM8  2D Bipolar Devices for Novel Logic 
Applications: Fabrication, Characterization and Applications, Ji Ung 
Lee, SUNY Polytechnic Institute INVITED 
The three pillars in semiconductor device technologies are (1) the p-n diode, 
(2) the MOSFET and (3) the Bipolar Junction Transistor (BJT). They have 
enabled the unprecedented growth in information technology that see today. 
For any new material, therefore, the development of these three devices is 
critical for providing benchmark performance against highly scaled Si-
based technologies. Here, we will describe our efforts to fabricate and 
characterize these three benchmark devices in 2D materials, including 
graphene and transition metal dichalcogenide semiconductors (TMDs). 

Although graphene is gapless, we will describe device concepts based on 
graphene p-n junctions that can lead to steep subthreshold slope devices. 
Critical to realizing such devices is the demonstration of relativistic Klein 
tunneling, a property of chiral carriers that arise from the unique electronic 
structure of graphene. Here, we will describe the fabrication and 
characterization of graphene p-n junctions, and discuss the unique tunneling 
properties that arise in these junctions and our efforts to realize high 
efficiency switching devices. 

Using TMD materials, we have fabricated a single device that can 
reconfigure into p-n, MOSFET, and BJT devices. The reconfigurable device 
allows us to provide fundamental linkages between material properties and 
device performance not possible by fabricating the three devices 
individually. We will provide our method of fabrication and describe 
electrical and optical properties of the reconfigurable device. 

11:20am  EM+NS+PS-MoM10  Electron Transport and Tunneling in 
Graphene-based Heterostructures, Emanuel Tutuc, The University of 
Texas at Austin INVITED 
Vertical heterostructures consisting of atomic layers separated by insulators 
can open a window to explore the role of electron interaction in these 
materials, otherwise not accessible in single layer samples, as well as to 
explore device applications.  

We describe here the realization of vertical heterostructures consisting of 
graphene, hexagonal boron nitride (hBN), and transition metal 
dichalcogenides realized using a layer-by-layer transfer. In double bilayer 
graphene heterostructures separated by hBN dielectric [1] where the two 
layers are rotationally aligned the interlayer tunneling current measured as a 
function of interlayer bias reveals a gate-tunable resonance thanks to 
momentum conserving tunneling. [2, 3] We discuss potential device 
application based on these experimental observations, as well as metrics 
that allow a benchmarking of their performance.  

We also discuss the realization and characterization of graphene-MoS2 
heterostructures, which reveal a strong negative compressibility in the MoS2 
layer as a result of electron-electron interaction. [4] 

Work done in collaboration with Kayoung Lee, Babak Fallahazad, Sangwoo 
Kang, Stefano Larentis, Hema C. P. Movva, Sanjay K. Banerjee, Leonard F. 
Register, Takashi Taniguchi, and Kenji Watanabe, and with support from 
the NRI-SWAN Center, Office of Naval Research, and Intel Corp. 

[1] “Chemical potential and quantum Hall ferromagnetism in bilayer 
graphene”, K. Lee, B. Fallahazad, J. Xue, D. C. Dillen, K. Kim, T. 
Taniguchi, K. Watanabe, E. Tutuc, Science 345, 58 (2014).  

[2] “Gate-Tunable Resonant Tunneling in Double Bilayer Graphene 
Heterostructures”, B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C. 
Corbet, K. Kim, H. C. P. Movva, T. Taniguchi, K. Watanabe, L. F. 
Register, S. K. Banerjee, E. Tutuc, Nano Letters 15, 428 (2015). 

[3] “Bilayer Graphene-Hexagonal Boron Nitride Heterostructure Negative 
Differential Resistance Interlayer Tunnel FET”, S. Kang, B. Fallahazad, K. 
Lee, H. C. P. Movva, K. Kim, C. Corbet, T. Taniguchi, K. Watanabe, L. 
Colombo, L. F. Register, E. Tutuc, S. K. Banerjee, IEEE Electron Device 
Letters 36, 405 (2015) 

[4] “Band Offset and Negative Compressibility in Graphene-MoS2 
Heterostructures”, S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. 
Kim, A. H. MacDonald, E. Tutuc, Nano Letters 14, 2039 (2014). 
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