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2:20pm  EM+AS+SS-MoA1  Engineered Tunnel-Barrier Terahertz 
Rectifiers for Optical Nantennas, Ivona Mitrovic, N. Sedghi, A.D. 
Weerakkody, J.F. Ralph, S. Hall, J.S. Wrench, P.R. Chalker, University of 
Liverpool, UK, Z. Luo, S. Beeby, University of Southampton, UK 
Thin film metal-insulator-metal rectifying devices using double, triple or 
quadruple insulator layers are currently the focus of attention for the 
development of next-generation optical nantennas for infrared energy 
harvesting. The interest is driven by their distinctive attributes, such as 
nanoscale footprint, room temperature operation, zero bias voltage 
requirement, and ease of integration with Complementary Metal Oxide 
Semiconductor technology. Highly asymmetric and nonlinear current-
voltage (IV) behaviour at low applied voltages is critical for this 
application. In this paper, we present comprehensive experimental and 
theoretical work on tunnel-barrier rectifiers comprising double 
(Ta2O5/Al2O3 and Nb2O5/Al2O3) and triple (Ta2O5/Nb2O5/Al2O3) insulator 
configurations engineered to enhance low voltage nonlinearity. There are 
two mechanisms that allow metal-insulator-insulator-metal (MIIM) 
rectifiers to have a high nonlinearity while keeping the resistance low: (i) 
resonant tunnelling, and (ii) step tunnelling. This paper focuses on the 
former approach. A modified multi-layer Tsu-Esaki method has been used 
for IV calculations from the transmission coefficient by the transmission 
matrix method. The theoretical work indicates that the onset of resonant 
tunneling in MIIM and MIIIM rectifiers can be adjusted to be close to zero 
volts by appropriate choice of work function difference of the metal 
contacts, the thickness of insulator layers, and the depth of the quantum 
well. The double and triple insulator rectifiers were fabricated using atomic 
layer deposition (ALD) and rf magnetron sputtering, while different metal 
contacts including Al, Ta, W, Nb, Cr and Ag were defined by 
photolithography or shadow mask and deposited by e-beam and thermal 
evaporation. The thickness, band gap, surface roughness, band offsets and 
work functions have been extracted from variable angle spectroscopic 
ellipsometry, atomic force microscopy, x-ray and inverse photoelectron 
spectroscopy on fabricated devices to ascertain the quality of the interfaces 
and to measure barriers. The key rectifier properties, asymmetry, 
nonlinearity and responsivity have been assessed from current voltage 
measurements performed in the range 293-370 K. A superior low voltage 
asymmetry (18 at 0.35 V) and responsivity (9 A/W at 0.2 V) has been 
observed for fabricated bilayer Ta2O5/Al2O3 and Nb2O5/Al2O3 MIIM 
devices respectively, in advance of state-of-the-art experimental values. The 
results demonstrate ALD and rf sputtered tunnel-barrier rectifiers which 
enhance low voltage nonlinearity and have the potential to be employed in 
optical nantennas for infrared energy harvesting. 

2:40pm  EM+AS+SS-MoA2  MIM Diodes for RF Energy Harvesting, 
A.A. Khan, A. Syed, F. Ghaffar, Atif Shamim, King Abdullah University of 
Science and Technology 
Metal Insulator Metal (MIM) diodes that work on fast mechanism of 
tunneling have been used in a number of very high frequency 
applications such as (Infra Red) IR detectors and optical Rectennas for 
energy harvesting. Their ability to operate under zero bias condition as 
well as the possibility of realizing them through additive techniques 
makes them attractive for (Radio Frequency) RF applications. 
However, two major issues namely, high surface roughness at the 
metal-insulator junction which effects the reliability of the diode, and 
very high resistance (typically in Mega Ohms) which complicates its 
matching with RF antenna have prevented its wide spread use in RF 
rectennas.  

In this work, various metal deposition methods such as sputtering and 
electron beam evaporation are compared in pursuit of achieving low 
surface roughness. Amorphous metal alloy has also been investigated in 
terms of its low surface roughness. Zinc oxide has been studied for its 
suitability as a thin dielectric layer for MIM diodes. Finally, 
comprehensive RF characterization of MIM diodes has been performed 
in two ways: 1) by standard S-parameter methods, and 2) by 
investigating their rectification ability under zero bias operation.  

It is concluded from the Atomic Force Microscopy (AFM) imaging that 
surface roughness as low as sub 1 nm can be achieved reliably from 
crystalline metals such as copper and platinum. This value is 

comparable to surface roughness achieved from amorphous alloys, 
which are non-crystalline structures and have orders of magnitude 
lower conductivities. Relatively lower resistances of the order of 1 Kilo 
Ohm with a sensitivity of 1.5 V-1 have been obtained through DC 
testing of devices with MIM diode structure of platinum/zinc oxide/ 
titanium. Finally, RF characterization reveals that input impedances in 
the range of 300 Ω to 25 Ω can be achieved in the low GHz frequencies 
(from 0.5-10 GHz). From the rectification measurements at zero bias, a 
DC voltage of 4.7 mV has been obtained from an incoming RF signal of 
0.4 W at 2.45 GHz, which indicates the suitability of these diodes for 
RF rectenna devices without providing any bias. These preliminary 
results indicate that with further optimization, MIM diodes are 
attractive candidates for RF energy harvesting applications.  

3:00pm  EM+AS+SS-MoA3  Diode Structure Based on Carbon 
Materials for Ultra high Frequency Driving, JaeEun Jang, Daegu 
Gyeongbuk Institute of Science and Technology (DGIST), Republic of 
Korea 
If the antenna can be designed to absorb wavelengths in the range of a few 
hundred THz with multi-antenna array design, it results in high conversion 
efficiency due to power production from various light sources between 
ultraviolet (UV) and infrared (IR) radiation that is often thought of as heat 
and exists beyond the visible range for humans. One of the problems in this 
idea, however, is the nature of visible or IR light to oscillate at ultra-high 
frequencies. Therefore, a rectifier working at such an ultra-high frequency 
should be developed with a highly efficient coupling between antenna and 
light. Because Schottky diode is limited to frequencies less than ~ THz 
level, nanometer size MIM diode structure has been suggested as alternative 
design. Two different metals have used normally to make an asymmetric 
characteristic of current-voltage. However the work function difference 
between the metals cannot produce a high asymmetry, which causes a poor 
rectifier performance, even though the structure can be driven in THz range. 
To solve this issue, we used a structural asymmetric MIM design. The 
planar asymmetric design using various metals or grapheme showed better 
asymmetric I-V characteristics than that of simple MIM structure. In 
addition, for the vertical aligned design, single multi-wall carbon nanotube 
was formed as one electrode to get high tunneling current caused by the 
structural effect of sharp tip. The structural asymmetry can make a different 
field density states to the metals, which induces a high rectify 
characteristics. The contrast ratio between the forward and the reverse bias 
is ~104 level. The estimated cut-off frequency is about 4.74THz. The 
electrical characteristics are stable up to 423K. 

3:20pm  EM+AS+SS-MoA4  Optical Rectenna Arrays using Vertically 
Aligned Carbon Nanotubes, Baratunde Cola, Georgia Institute of 
Technology 
The response of a multiwall carbon nanotube to visible light has been 
reported to be consistent with conventional radio antenna theory. 
Researchers have proposed that this result might be exploited to realize 
an optical rectification device – that is, a device that converts free-
propagating electromagnetic waves at optical frequencies to localized 
d.c. electricity. However, an experimental demonstration of this 
concept requires that the multiwall carbon nanotube antenna be 
coupled to a diode that operates on the order of 1 petahertz (switching 
speed on the order of a femtosecond). Ultralow capacitance, on the 
order of a few attofarads, could allow a diode to operate at these 
frequencies; and the development of metal-insulator-metal tunnel 
junctions with nanoscale dimensions has emerged as a potential path to 
diodes with ultralow capacitance, but these structures remain 
extremely difficult to fabricate and couple to a nanoscale antenna 
reliably. Here we demonstrate optical rectification by engineering 
metal-insulator-metal tunnel diodes at the tips of multiwall carbon 
nanotubes, which act as the antenna and metallic electron emitter in 
the diode. This performance is achieved using diode areas based on the 
diameter of a single carbon nanotube (about 10 nanometers), geometric 
field enhancement at the carbon nanotube tips, and a low work 
function semi-transparent top metal contact. Using vertically-aligned 
arrays of the diodes, we measure d.c. open-circuit voltage and short-
circuit current at visible and infrared electromagnetic frequencies that 
is due to a rectification process, and quantify minor contributions from 
thermal effects. Our devices show evidence of photon-assisted 
tunneling, and exhibit zero-bias diode responsivity on the order of 0.1 
amps per Watt and zero-bias differential resistance as low as 100 ohms-
centimeter squared under illumination. Additionally, power 
rectification is observed under simulated solar illumination. Numerous 
current-voltage scans on different devices, and between 5-77 degrees 
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Celsius, show no detectable change in diode performance, indicating a 
potential for robust operation.  

3:40pm  EM+AS+SS-MoA5  World Record Tunable Microwave 
Dielectrics, C.H. Lee, Cornell University, N.D. Orloff, National Institute of 
Standards and Technology (NIST), T. Birol, Y. Zhu, Y. Nie, Cornell 
University, V. Goian, Institute of Physics ASCR, R. Haislmaier, 
Pennsylvania State University, J.A. Mundy, Cornell University, J. Junquera, 
Universidad de Cantabria, P. Ghosez, Université de Liège, R. Uecker, 
Leibniz Institute for Crystal Growth, V. Gopalan, Pennsylvania State 
University, S. Kamba, Institute of Physics ASCR, L.F. Kourkoutis, K.M. 
Shen, D.A. Muller, Cornell University, I. Takeuchi, University of Maryland, 
College Park, J.C. Booth, National Institute of Standards and Technology 
(NIST), C.J. Fennie, Darrell Schlom, Cornell University INVITED 
The miniaturization and integration of frequency-agile microwave 
circuits—relevant to electronically tunable filters, antennas, resonators, 
phase shifters and more—with microelectronics offers tantalizing device 
possibilities, yet requires thin films whose dielectric constant at GHz 
frequencies can be tuned by applying a quasi-static electric field. 
Appropriate systems, e.g., BaxSr1–xTiO3, have a paraelectric-to-ferroelectric 
transition just below ambient temperature, providing high tunability. 
Unfortunately such films suffer significant losses arising from defects. 
Recognizing that progress is stymied by dielectric loss, we start with a 
system with exceptionally low loss—Srn+1TinO3n+1 phases—where (SrO)2 
crystallographic shear planes provide an alternative to point defect 
formation for accommodating non-stoichiometry. Guided by theoretical 
predictions, we biaxially strain a Srn+1TinO3n+1 phase with n = 6 to introduce 
a ferroelectric instability and create a new type of tunable microwave 
dielectric. This tunable dielectric exhibits a world record figure of merit at 
room temperature and frequencies up to 125 GHz. Our studies also reveal 
details about the microscopic growth mechanism of these phases, which are 
relevant to preparing atomically precise oxide interfaces to these and other 
Ruddlesden-Popper phases. 

4:20pm  EM+AS+SS-MoA7  Bandgap Engineering and Application of 
SiZnSnO Amorphous Oxide Semiconductor, Sang-Yeol Lee, Cheongju 
University, Republic of Korea INVITED 
The band gap of the amorphous SiZnSnO (SZTO) semiconductor has been 
controlled by bandgap engineering using Si ratio. The addition of small 
amount of Si in SZTO channel layer can change the position of Fermi level 
in band gap. By investigating the ultraviolet photoelectron spectroscopy 
(UPS) characteristics, it is verified that Si atoms can modify the Fermi 
energy level of SZTO thin films. Carrier generation originated from the 
oxygen vacancy could modify the Fermi level in the band gap of oxide thin 
films since Si could be an oxygen vacancy suppressor. This is also related 
with the origin of defect state which was observed to be involved with the 
creation of oxygen vacancies. Since it is not so easy to derive directly the 
change of the Fermi energy level in the energy band gap of amorphous 
oxide semiconductor, no report of the relation between the Fermi energy 
level in the energy band gap of oxide semiconductor and the device stability 
of oxide thin film transistors has been reported. We derive directly band gap 
and Fermi energy level by using the ultraviolet photoelectron spectroscopy 
(UPS) characteristics, Kelvin probe (KP) and electron energy loss 
spectroscopy (EELS). The instability mechanism of amorphous oxide thin 
film transistors based on the band parameter of oxide semiconductor will be 
discussed and applied to display applications. 

5:00pm  EM+AS+SS-MoA9  Self-aligned Vertical ZnO-based Circuits 
by Spatial ALD, Shelby Nelson, C.R. Ellinger, L.W. Tutt, Eastman Kodak 
Company 
Metal oxide thin-film transistors (TFTs) are becoming the mainstream for 
display backplanes. These TFTs are fabricated with traditional 
photolithographic techniques, typically on rigid substrates. In our lab, we 
explore approaches that are more “print-compatible”, with broad alignment 
tolerance and no small-gap mask features. We deposit zinc oxide (ZnO) 
semiconductors, aluminum oxide (Al2O3) dielectrics, and aluminum-doped 
zinc oxide conductors by the fast, atmospheric pressure, large-area-
compatible, spatial atomic layer deposition (SALD) process. In addition to 
depositing good-quality thin-film transistor layers at temperatures at and 
below 200 °C, this process can work with a wide variety of rough and 
deformable substrates. 

Here we describe vertical TFT and circuit architectures that unite process 
simplicity with high performance. The liberal design rules result from 
vertical transistors with self-aligned source and drain contacts that define 
the sub-micron channel length. Using 10-micron design rules for both the 
minimum line/space dimensions and for alignment tolerances, we have 
fabricated 9-stage ring oscillators with greater than 1 MHz oscillation 
frequency, at supply voltage below 6 V. Starting with a gate layer with a re-
entrant profile on the edge, these devices use spatial ALD to conformally 

coat the Al2O3 gate dielectric and ZnO semiconductor, and a line-of-sight 
deposition process such as evaporation for the aluminum electrodes. 
Individual device characteristics as well as circuit performance will be 
discussed.  

5:20pm  EM+AS+SS-MoA10  Geometrically Asymmetric Tunneling 
Nanostructures by Atomic Layer Deposition, Jie Qi, X. Jiang, B.G. 
Willis, University of Connecticut 
Geometrically asymmetric tunneling nanostructures are of interest to make 
ultra-high frequency diodes for applications in detection and solar energy 
harvesting. Atomic layer deposition (ALD) is one of the most promising 
techniques for fabrication of tunneling nanostructures. In previous work, it 
has been demonstrated that individual metal-vacuum-metal (MVM) tunnel 
junctions with a gap distance of 1-2 nm can be fabricated by selective-area 
ALD of Cu onto Pd templates. However, optimizing nonlinearity and 
scaling up to large arrays of tunneling devices both introduce new 
challenges that include achieving precise control of nucleation and good 
quality conformal growth on sharply defined asymmetric nanostructures. 

In this study, the fabrication of large arrays of MVM tunnel junctions is 
investigated using selective-area ALD. Nano-patterned Pd nanostructures 
with sharp asymmetric features are prepared as seed layers for planar, 
geometrically-asymmetric junctions on SiO2 / silicon substrates by high-
resolution electron beam lithography. Selective-area ALD applied to 
patterned Pd nanostructures allows tuning the size of junctions to nanometer 
dimensions. Microscopy and chemical analysis are used to evaluate 
nanostructure morphology, tunnel junction uniformity, and selective area 
growth characteristics. In-situ electrical measurements are used to measure 
DC current-voltage curves and nonlinearity. It was found that film 
nucleation and growth selectivity can be greatly affected by different pre-
deposition sample treatments. UV/Ozone (UVO) cleaning and hydrogen 
annealing before ALD both enhance the nucleation of Cu thin films on Pd 
seed layers. In addition, UVO treatment promotes selective growth on Pd 
vs. SiO2 areas while boiling samples in water to hydroxylate SiO2 surface 
area contributes to a loss of selectivity. In-situ measured electrical data 
during ALD growth demonstrate a gradual convergence to tunneling with 
sub-nm control provided by the ALD method. However, control of 
tunneling non-linearity and geometric asymmetry is complicated by an 
incomplete understanding of the growth mechanism and the morphology 
evolution of nanostructures. There is a compromise between conditions that 
promote good ALD growth and those that maintain geometric asymmetry. 
We conclude with suggestions to promote growth, maintain sharp 
asymmetric features, and achieve non-linear tunneling characteristics. 
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