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8:00am  2D+MN+NS+SP+SS+TF-WeM1  Mechanical Properties of 
Polycrystalline Graphene, Joseph Gonzales, University of South Florida, 
R. Perriot, Los Alamos National Laboratory, I.I. Oleynik, University of 
South Florida 
Experimental investigation of mechanical properties indicates that the 
polycrystalline graphene grown by chemical vapor deposition is as strong as 
pristine. The microscopic characterization of graphene samples using 
Atomic Force microscopy (AFM) nano-indentation is limited in the sense 
that the detailed mechanical characteristics such as stress and stain 
distributions under the indenter, elastic moduli and breaking strength are not 
available directly from experiment. Using accurate description of 
interatomic interactions provided by novel screened environment-dependent 
bond order, (SED-REBO) potential, we performed large-scale molecular 
dynamics investigations of mechanical properties of polycrystalline 
graphene under conditions mimicking nano-indentation AFM experiments. 
The atomically resolved characterization of the stress and strain 
distributions under indenter are used to understand detailed mechanisms of 
graphene strength and failure. The breaking strength, the crack initiation 
and propagation are investigated as a function of the grain boundary 
structure and the grain size distribution as well as the position of the 
indenter – at the center of the grain, at the a single grain boundary and at the 
junction of three or more grain boundaries.  

8:40am  2D+MN+NS+SP+SS+TF-WeM3  Lévy Flights Found in 
Freestanding Graphene, Paul Thibado, University of Arkansas, M. Neek-
Amal, F. Peeters, University of Antwerp, Belgium 
Local, long-time evolution measurements of the height fluctuations of a 2D 
membrane allows examination of the fundamental foundations of statistical 
mechanics in soft condensed matter. However, such measurements have 
proved elusive, thereby forcing critical theoretical assumptions in the best 
models. We report sub-nanometer, high-bandwidth height measurements of 
freestanding graphene using constant-current, point-mode scanning 
tunneling microscopy, as a follow-up to our previous related works [1-2]. 
By tracking atoms directly, the ability to measure dynamic events is 
increased by a factor of 1000 over the present state-of-the-art membrane 
imaging technology. Surprisingly, the membrane velocities follow the 
Cauchy-Lorentz distribution consistent with a Lévy process, rather than the 
expected Maxwell-Boltzmann distribution. We introduce a new theoretical 
approach using fractional-stochastic calculus. 
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9:00am  2D+MN+NS+SP+SS+TF-WeM4  Multilayer Graphene 
Strength Characterization, Joseph Rowley, N. Boyer, K. Berry, R.C. 
Davis, Brigham Young University, R. Creighton, J. Abbott, S. Cornaby, M. 
Harker, Moxtek Inc., R. Vanfleet, Brigham Young University 
Although there are many examples in the literature of multilayer graphene 
fabrication and electrical characterization, there is a lack of data on the 
mechanical properties of multilayer graphene, especially many layer. 
Conversely there is data about the mechanical properties of single layer 
graphene, and limited information about bilayer and few layer, but little 
about many layer. Multilayer Graphene was fabricated using chemical 
vapor deposition on a Nickel catalyst. Different flow rates and cooling rates 
were investigated to produce many layer films. Due to the high strength in 
graphene, these films were able to be suspended over millimeter size 
openings and have a differential pressure applied. This allowed for the 
characterization of the strength of these membranes using bulge testing. 

9:20am  2D+MN+NS+SP+SS+TF-WeM5  Nanoelectromechanical 
Systems Based on 2D Materials beyond Graphene -- Effects from 
Geometry, Nonlinearity, and Anisotropy, Zenghui Wang, Case Western 
Reserve University INVITED 
Investigating and manipulating the mechanical degree of freedom in two-
dimensional (2D) nanostructures present unique challenges and 
opportunities: such effort demands advanced fabrication and measurement 
schemes, and offers new insight into the physical properties of 2D 
materials. I will present our explorations and findings in mechanical 
processes at the nanoscale, through studying resonant 
nanoelectromechanical systems (NEMS) based on 2D materials beyond 
graphene (e.g., molybdenum disulfide, black phosphorus, etc.). I will 
discuss the implications of geometrical irregularities on the nanomechanical 
responses of 2D-material-based resonators; impacts of device and material 
parameters on the mechanical nonlinearity and motional noise in 2D 
resonant transducers; and effects of material anisotropy in nanomechanical 
resonators based on new types of highly anisotropic 2D materials. These 
findings open new pathways towards nanomechanical coupling and tuning 
of the physical properties in 2D nanomaterials, and offer opportunities for 
building novel devices with new multimode functions.  

11:00am  2D+MN+NS+SP+SS+TF-WeM10  Phonon Spectroscopy of 
Graphene Field Effect Devices with the STM, Fabian Natterer, Y. Zhao, 
J. Wyrick, NIST/CNST, W.Y. Ruan, Y.-H.C. Chan, M.-Y.C. Chou, Georgia 
Institute of Technology, N.B. Zhitenev, J.A. Stroscio, NIST/CNST 
Phonon spectroscopy of graphene by inelastic electron tunneling 
spectroscopy with the STM has been elusive in previous measurements [1–
3]. The difficulty lies within the weak phonon signatures that are buried by 
other dominant spectral features that inhibit a clear distinction between 
phonons and miscellaneous excitations. Utilizing a back gated graphene 
device that permits continuous adjustment of the global charge carrier 
density, we employ an averaging method where individual tunneling spectra 
at varying charge carrier density are condensed into one representative 
spectrum [4]. This method improves the signal for inelastic transitions that 
appear at constant threshold, while it broadens and thereby suppresses 
dispersive spectral features. We use this method to demonstrate the 
mapping of the total graphene phonon density of states, in good agreement 
with density functional calculations. Using the knowledge about the 
phonons thusly obtained, we closely examine our gate resolved spectra and 
observe a surprising and abrupt change in the phonon intensity when the 
graphene charge carrier type is switched through a variation of the back gate 
electrode potential. This sudden variation in phonon intensity is asymmetric 
in carrier type, depending on the sign of the tunneling bias. We invoke a 
resonance mediated tunneling process that relies on the presence of tip-
induced quasi-bound state resonances in graphene, resembling whispering 
gallery modes for electrons and holes [5]. Our tip-sample system thereby 
mimics a giant molecular state and shares analogies with resonant enhanced 
excitations of molecular vibrational or rotational modes [6–9]. 
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11:20am  2D+MN+NS+SP+SS+TF-WeM11  Edge-state-induced 
Stabilization of Dopants in Graphene, Yuuki Uchida, A. Akaishi, J. 
Nakamura, The University of Electro-Communications (UEC-Tokyo) and 
JST CREST, Japan 
Impurity doping is an efficient way to modify electronic properties of 
graphene. Several groups have reported the stability of dopants in graphene, 
especially near edges of graphene: Impurity atoms prefer to locate at the 
zigzag edge of graphene rather than the armchair one[1]. It has also been 
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reported that the electronic properties are strongly dependent upon the 
location of dopants, which is derrived from the non-equivalence of the two 
sublattice[2]. It is well-known that the edge-localized state emerges at the 
zigzag edge[3], which is specific for the so-called bipartite lattice. However, 
it has not been clarified yet how the edge-state affects the dopant stability 
depending on the sublattice. In this study, we investigate the role of the 
sublattice-dependent edge-state on the stabilization of impurities. We 
evaluate the dependence of the structural stability on the distance of 
impurity atoms from the zigzag edge using first-principles calculations 
within the density-functional theory. We have employed two types of 
graphene nanoribbons (GNRs) with the armchair- (AGNR) or the zigzag- 
(ZGNR) edge. 

For AGNR, the formation energy of dopants does not change neither 
systematically nor monotonically as a function of the distance from the 
edge. On the other hand, for ZGNR, the formation energy is lower than that 
for AGNR and decreases with decreasing distance from the edge. In 
addition, two types of tendencies are confirmed for odd- and even-
numbered sites from the zigzag edge, corresponding to the different 
sublattices of the bipartite lattice. 

Such peculiar behavior as for of the formation energy can be explained as 
follows : The doped N atom donates its electron to the unoccupied-edge-
state just above the Fermi level, resulting in the lowering of the one-electron 
energy of this state. The smaller the distance of N atoms from the zigzag 
edge is, the larger the electrostatic attraction between electrons of edge-
localized states and positively-charged ion-shell at the N site becomes. 
Further, N atoms are much more stabilized at the odd-numbered site, 
because the edge-state has finite amplitude only at the odd-numbered sites. 
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11:40am  2D+MN+NS+SP+SS+TF-WeM12  Exploring the Thermal 
Stability of Two-Dimensional Black Phosphorus, Xiaolong Liu, J.D. 
Wood, K.-S. Chen, E. Cho, M.C. Hersam, Northwestern University 
Two dimensional (2D) black phosphorus (BP) has attracted significant 
attention due to its superlative electronic and optical properties. Unlike 
graphene, its intrinsic and thickness-dependent band gap makes it feasible 
for direct application in electronic and optoelectronic devices.1 However, 
before 2D BP can be effectively employed in such applications, it is 
necessary to establish the thermal stability of 2D BP since annealing is a 
key element in most device fabrication processes. Towards this end, we 
have utilized in situ scanning/transmission electron microscopy and 
spectroscopy methods to characterize the thermal decomposition process of 
mechanically exfoliated 2D BP.2 The decomposition is observed to occur at 
~400 °C in the form of sublimation, compared to the 550 °C of bulk BP. 
This decomposition initiates via eye-shaped cracks along the [001] direction 
and then continues until only a thin, amorphous red phosphorous-like 
skeleton remains. In situ electron energy loss spectroscopy, energy-
dispersive X-ray spectroscopy, and energy-loss near-edge structure changes 
provide further quantitative insight into this chemical transformation 
process. 
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12:00pm  2D+MN+NS+SP+SS+TF-WeM13  Gas Permeation Through 1 
nm Thick Carbon Nanomembranes, A. Beyer, M. Ai, Bielefeld 
University, Germany, S. Shishatskiy, J. Wind, Helmholtz-Zentrum 
Geesthacht, Germany, X. Zhang, V. Chinaryan, Y. Yang, Armin 
Gölzhäuser, Bielefeld University, Germany 
The gas permeation characteristics of 1 nm thick carbon nanomembranes 
(CNMs) from self-assembled monolayers are reported. The assembly of 
CNMs onto polydimethylsiloxane (PDMS) support membranes allows 
determination of gas permeation characteristics. Single layer and triple layer 
CNMs were investigated in respect to permeation of hydrogen, helium, 
carbon dioxide, oxygen, nitrogen, argon, methane and ethane. In addition, 
the CNM-PDMS composites were characterized by X-ray photoelectron 
spectroscopy, helium-ion microscopy as well as atomic force microscopy. A 
careful analysis about the contribution of the PDMS support membranes to 
the gas permeation allowed an estimate of the intrinsic CNM permeances. 
These values indicate a molecular sieve-like property of CNMs which is 
attributed to molecular-sized channels in CNMs. As an example, hydrogen 
and carbon dioxide gas molecules display an order of magnitude higher 
permeance values for single layer CNMs in comparison to oxygen and 
nitrogen, which possess larger kinetic diameters. 
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