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8:20am  2D+EM+NS+PS+SP+SS+TF-MoM1  Growth and FTIR 
Characterization of 2D Hexagonal Boron Nitride on Metal Substrates, 
Boris Feigelson, V.M. Bermudez, J.K. Hite, Z.R. Robinson, V.D. Wheeler, 
K. Sridhara, S.C. Hernández, US Naval Research Laboratory 
Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one 
of the key materials in the development of new van der Waals 
heterostructures due to its outstanding properties including an atomically 
smooth surface, high thermal conductivity, high mechanical strength, 
chemical inertness and high electrical resistance. The development of 2D h-
BN growth is still in the early stages and largely depends on rapid and 
accurate characterization of the grown monolayer or few layers h-BN films. 

In this work, the IR-active out-of-plane vibrational mode of 2D h-BN films 
grown in vertical reactor by atmospheric-pressure CVD on metal substrates 
(mainly Cu but also Ni) is exploited to identify 2D h-BN directly on 
substrates and studied both computationally and experimentally.  

Fourier transform grazing-incidence infrared reflection absorption 
spectroscopy (FT-IRRAS) data have been used to characterize monolayer 
and few-layer h-BN films directly on metal substrates. Two sub-bands of 
the A2u(LO) vibrational mode were, for the first time, found for thin 2D h-
BN films in contact with Cu and Ni [1]. To unveil the nature of the 
discovered sub-bands, ab-initio calculations were performed and verified 
using 2D h-BN films grown on various Cu substrates with varying coverage 
and with individual crystallites of different shapes and size up to 4 mm. It 
was shown that the lower-energy A2u(LO)1 sub-band around 819 cm-1 is 
related to 2D h-BN coupled with Cu substrate, while the higher energy 
A2u(LO)2 sub-band around 824 cm-1 is related to decoupled (essentially free 
standing) 2D h-BN. These findings demonstrate not only a new and facile 
method for immediate 2D h-BN identification and characterization, but also 
a method that provides a simple means to characterize the degree of 
coupling between 2D h-BN and the substrate. This approach also provides 
an opportunity to determine which growth conditions lead to the absorption 
of foreign species on the substrate prior to the h-BN deposition and which 
conditions can prevent the formation of the interfacial layer between h-BN 
and the substrate. Such interfacial layers, like oxidized Cu, were shown to 
result in easily-recognizable shifts in the A2u(LO) peak. The degree to 
which the interaction of the h BN layer with the substrate is uniform and 
homogenous can also be assessed easily by examining the width and fine 
structure of the A2u(LO) band. The developed approach can also be used to 
study growth and formation of h-BN/graphene and other 2D 
heterostructures. 
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8:40am  2D+EM+NS+PS+SP+SS+TF-MoM2  Effect of Surface 
Termination on the Growth of Graphene on Cu Single Crystal 
Substrates, Tyler Mowll, E.W. Ong, University at Albany-SUNY, P. Tyagi, 
GLOBALFOUNDRIES, Z.R. Robinson, College at Brockport-SUNY, C.A. 
Ventrice, Jr., SUNY Polytechnic Institute 
The most common technique for synthesizing single-layer graphene films 
with large lateral dimensions is chemical vapor deposition (CVD) on Cu 
foil substrates. The primary reasons for choosing Cu substrates are the 
extremely low solubility of carbon in Cu, which allows a self-limited 
growth of graphene, and the relatively low cost of the Cu foil substrates. 
However, the transport properties of the CVD grown graphene films are 
typically a couple of orders of magnitude lower than for graphene flakes 
mechanically exfoliated from graphite. One of the reasons for the reduction 
in transport properties is the presence of crystalline defects in the CVD 
grown films. These structural defects arise in part from the multidomain 
structure of the Cu films. In order to achieve a better understanding of the 
influence of the surface termination of the Cu substrate on the 
crystallization of graphene during the CVD growth process, a systematic 
study of graphene growth on Cu(100), Cu(110), and Cu(111) crystals has 
been performed. The growth process is performed in an ultra-high vacuum 
(UHV) chamber that has been modified to perform CVD growth at 
pressures as high as 100 mTorr. The precursor gas used is ethylene. This 

growth procedure allows for the preparation of the clean surfaces in UHV, 
growth under typical CVD conditions, and characterization of the surface 
structure in UHV, without exposing the sample to atmospheric 
contaminants. Our results indicate that the Cu(111) surface has the lowest 
catalytic activity of the three surfaces for the decomposition of ethylene. In 
fact, the decomposition rate is so low that graphene growth is suppressed 
because of the sublimation of Cu at the elevated temperatures used to grow 
the graphene. By using an Ar overpressure, it was found that graphene 
could be grown on that surface. The surface symmetry of the Cu substrate 
has a strong influence on the rotational alignment of the graphene grains as 
they nucleate on each surface. For Cu(111), single-domain graphene growth 
can be achieved for ethylene pressures of 5 mTorr or less. For both Cu(100) 
and Cu(110), a minimum of two graphene domains is always observed. 

9:00am  2D+EM+NS+PS+SP+SS+TF-MoM3  Thermally Annealed and 
Electropolished Cu Substrates for CVD Growth of 2D Materials: 
Graphene, h-BN and MoS2, Karthik Sridhara, Texas A&M University, 
B.N. Feigelson, J.K. Hite, US Naval Research Laboratory, A. Nath, George 
Mason University, M. Fuhrer, Monash University, Australia, D.K. Gaskill, 
US Naval Research Laboratory, H. Castaneda, L.O. Nyakiti, Texas A&M 
University 
The growth of two dimensional (2D) materials such as graphene, hexagonal 
boron nitride (h-BN) and molybdenum disulphide (MoS2) have been 
demonstrated by chemical vapor deposition (CVD) on polycrystalline 
catalytic copper substrates. These Cu foil substrates (25 µm thick) are 
produced by metallurgical rolling leading to the formation of irregular 
ridges on the foil surface along with a film of native oxide on the surface. 
These processing artifacts are a limiting factor for controlled and 
reproducible large area (several cm2) growth of 2D materials. Greater 
control of growth can be achieved by controlling the density of nucleation 
sites and improving the catalytic activity of Cu by removing the Cu native 
oxide on the surface. Previous attempts to pre-treat the Cu substrate by 
using wet chemistry or thermal annealing to control growth has been 
weakly addressed. 

In this work, electropolishing combined with prior thermal annealing at 
1030°C for 5 hrs under H2 is used to control the degree of roughness of cold 
rolled polycrystalline Cu foils, and subsequently, to explore the influence of 
electropolishing on the growth of 2D materials: graphene, h-BN and MoS2. 
Electropolishing dissolves a thin surface layer of Cu, which contains surface 
defects and contaminants. This helps in decreasing the density of 
spontaneous nucleation sites by producing a morphologically uniform and 
contaminant-free surface. Secondary effects, etch pits which are ascribed to 
O2 bubbling at random nucleation sites on Cu surface, are mitigated by 
using additives, such as acetic acid and ethylene glycol, in the H3PO4 
electrolyte. Thermal annealing and electropolishing results in this work 
reveal that a roughness of ~1.2 nm (Rq) can be achieved as measured by 
Atomic Force Microscope (AFM) along with a greatly planarized Cu foil. 
AFM will also be used to establish the Cu substrate morphology and its 
relationship to the growth of 2D materials. Fourier Transform Infrared, and 
Raman spectroscopy will be used to confirm the existence of the 2D 
material. Preliminary growth studies of h-BN on these high quality Cu 
substrates demonstrate improved growth, as assessed by the metrics of size 
and count of h-BN crystals from Scanning Electron Microscopy (SEM) 
micrographs [1]. This work will demonstrate that thermal annealing 
followed by electropolishing leads to optimization of Cu foil surface 
resulting in the larger crystal size and a reduction in nucleation sites that 
induce 2D material crystal growth [1]. 

[1] K. Sridhara. “Growth of hexagonal boron nitride on electrochemically 
prepared polycrystalline Cu substrates.” M.S. Thesis, University of 
Maryland, College Park, MD, 2014. 

9:20am  2D+EM+NS+PS+SP+SS+TF-MoM4  In Situ Optical 
Diagnostics During Molybdenum Disulfide Chemical Vapor Deposition, 
Berc Kalanyan, J.E. Maslar, W.A. Kimes, B.A. Sperling, National Institute 
of Standards and Technology (NIST), R. Tieckelmann, T. Orzali, 
SEMATECH, R. Beams, S.J. Stranick, A.V. Davydov, National Institute of 
Standards and Technology (NIST) 
Two dimensional (2D), layered transition-metal dichalcogenides (TMDs), 
e.g., MoS2, are of increasing interest for next-generation nanoelectronic and 
optoelectronic devices. These materials have thickness dependent optical 
and electrical properties that make them suitable for a variety of 
applications including integrated circuits. For many applications, high 
volume manufacturing (HVM) of devices based on TMDs will require 
deposition techniques that are capable of reproducibly growing wafer-scale, 
2D TMD films with monolayer control. To date, such a capability has not 
been widely demonstrated with typical TMD deposition processes. 
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This work aims to identify promising chemistries for HVM TMD chemical 
vapor deposition (CVD) processes. We focus on MoS2 CVD using a variety 
of precursors (including organometallics, elemental sulfur, and organosulfur 
compounds) in a research grade single-wafer deposition system equipped 
with in situ optical diagnostics. The precursor flux is measured using optical 
mass flow meters installed on the delivery lines while deposition chemistry 
is characterized in the reactor volume above the deposition surface using in 
situ Fourier transform infrared (FR-IR) spectroscopy. As-deposited and 
annealed films are characterized with ex situ techniques, including Raman 
and photoluminescence spectroscopy, scanning and transmission electron 
microscopy, and X-ray photoelectron spectroscopy. 

Stoichiometric MoS2 films have been prepared from (η5-
ethylcyclopentadienyl)-dicarbonylnitrosyl molybdenum and elemental 
sulfur. As-grown films are smooth and continuous with major MoS2 Raman 
modes present. Film thickness scales approximately with Mo precursor 
exposure time and few-layer films can be produced using pulsed injection 
mode. Furthermore, optical in situ diagnostics allow us to relate metal 
precursor flux to film crystallinity and facilitate the study of precursor 
decomposition in the thermal boundary layer. 

9:40am  2D+EM+NS+PS+SP+SS+TF-MoM5  Controlled Interfaces in 
2D Materials, Arend van der Zande, University of Illinois at Urbana 
Champaign INVITED 
Interfaces are ubiquitous in material science and technologies. For example, 
grain boundaries often dominate the mechanical and electrical properties in 
crystalline materials, while interfaces between dissimilar materials form the 
fundamental building blocks to diverse technologies, such as building 
electrical contacts in transistors and PN diodes in solar cells. Interfaces 
become even more important in 2D materials such as graphene and 
transition metal dichalcogenides, where the lack of dangling bonds enables 
material stability down to a single monolayer. In this entirely surface-
dominated limit, the usual rules governing 3D interface devices, such as 
depletion regions, break down. 

In this talk, we will discuss our work on engineering in- and out-of-plane 
2D materials interfaces. We will first examine the structure of atomically-
thin membranes and the impact of defects such as grain boundaries on the 
mechanical, optical, and electronic properties. We fabricate out-of-plane 
interfaces by stacking 2D materials to form heterostructures, which we 
utilize to tailor the bandgap in 2D materials and build new optoelectronic 
devices such as tunable photodiodes. Looking to the future, the rapidly 
expanding family of 2D materials with a diverse set of electronic properties 
provide a promising palette for discovering emergent phenomena and a 
motivation for developing overarching design principles for understanding 
and controlling interfaces in 2D.  

10:40am  2D+EM+NS+PS+SP+SS+TF-MoM8  Obtaining Clean 
Suspended CVD Graphene: Comparative Examination of Few 
Transfer and Cleaning Protocols, Alexander Yulaev, National Institute of 
Standards and Technology (NIST), University of Maryland (UMD), G. 
Cheng, A. Hight Walker, National Institute of Standards and Technology 
(NIST), M. Leite, University of Maryland (UMD), A. Kolmakov, NIST 
Clean suspended graphene is used as supporting media in TEM, filtering 
membranes, and as electron transparent windows in ambient pressure 
electron spectroscopy and microscopy. CVD grown graphene is the most 
popular material for these applications due to its large-scale and high yield 
production. Multiple approaches such as sacrificial layer based methods [1] 
and direct transfer method on perforated carbon mesh by IPA droplet [2] 
have been implemented to transport graphene from copper or nickel foil 
onto a target substrate. However, the cleanness of the suspended graphene 
remains to be an issue, and controversial results on lateral size of atomically 
clean graphene domains have been reported [2-5]. We conduct the 
comparative analysis of the most widely-used CVD graphene transfer and 
cleaning protocols. In particular, using extreme surface sensitivity of low 
energy SEM, we compare the standard PMMA based approach with direct 
graphene transfer method. We also propose alternative graphene transfer 
protocol which is based on employment of polycyclic aromatic hydrocarbon 
(PAH) as a sacrificial layer. The advantage of PAH method over others 
consists in facile sublimation of sacrificial layer upon heating PAH material 
within moderate temperature range of 100-150 oC. All three methods of 
graphene transfer were compared under the same conditions followed by 
similar graphene cleaning procedures by platinum catalysis [4] and 
activated carbon adsorption [5]. Both SEM and TEM study revealed the 
superiority of PAH method to achieve cleaner suspended CVD graphene. 
We envision that novel approach of graphene transfer can be employed 
under conditions when exposure of the sample to moisture is prohibited 
such as in battery research.  

 

[1] “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary 
Substrates”, Ji Won Suk et al., ACS Nano, 2011, 5 (9), pp. 6916. 

 

[2] “A direct transfer of layer-area graphene”, William Regan et al., Appl. 
Phys. Lett., 2010, 96, 113102. 

 

[3] “Low-energy electron holographic imaging of gold nanorods supported 
by ultraclean graphene”, Jean-Nicolas Longchamp et al., Ultramicroscopy 
145 (2014) 80. 

 

[4] “Ultraclean freestanding graphene by platinum-metal catalysis”, Jean-
Nicolas Longchamp et al., J. Vac. Sci. Technol. B 31, 020605 (2013). 

 

[5] “Dry-cleaning of graphene”, Gerardo Algara-Siller et al., Applied 
Physics Letters 104, 153115 (2014). 

11:00am  2D+EM+NS+PS+SP+SS+TF-MoM9  Low-Energy Electron 
Microscopy of Transition Metal Dichalcogenides Prepared by Various 
Methods, Sergio de la Barrera, S. Satpathy, R. Feenstra, Carnegie Mellon 
University, S. Wu, X.D. Xu, University of Washington, S. Vishwanath, X. 
Liu, J. Furdyna, D. Jena, H. Xing, University of Notre Dame, Y.-C. Lin, 
S.M. Eichfeld, J.A. Robinson, Pennsylvania State University, P. Mende, 
Carnegie Mellon University 
Recent work on two-dimensional materials has focused on transition metal 
dichalcogenides (TMDs), owing to their semiconducting behavior. 
Characterizing as-grown TMDs is crucial in improving the understanding of 
the effects of growth conditions, and ultimately improving material quality. 
Low-energy electron microscopy (LEEM) is a powerful tool for this 
purpose, providing real-space images with ~10 nm spatial resolution as well 
as selected-area low-energy electron diffraction (µLEED) of local crystal 
orientation at length scales down to ~ 1 µm. Additionally, by varying the 
incident electron beam energy, low-energy electron reflectivity (LEER) 
spectra are extracted. 

In this work, comparative LEEM results are presented from three TMD 
materials: MoS2 prepared by exfoliation (onto Si), MoSe2 grown by 
molecular beam epitaxy (MBE) (on epitaxial graphene), and WSe2 grown 
by chemical vapor deposition (CVD) (also on epitaxial graphene). It is 
found that for TMDs generally, the LEER spectra do not exhibit the 
oscillatory behavior (in the 0 – 6 eV range) that is seen for both graphene 
and hexagonal boron nitride (h-BN) for various numbers of monolayers 
(MLs). This lack of oscillatory behavior is interpreted as being due to the 
weak coupling of the interlayer states localized in between the MLs, which 
is itself a result of the relatively large out-of-plane lattice parameter. 
Nevertheless, additional “band structure” features in the LEER spectra 
permit clear identification of the TMD materials relative to the substrates. 
The exfoliated flakes are seen to extend over many 10’s of mm, the MBE-
grown MoSe2 forms a nearly continuous film, and the CVD-grown WSe2 
forms triangular islands several mm in extent. µLEED studies of the MBE-
grown MoSe2 and CVD-grown WSe2 reveal preferential orientation with the 
underlying graphene substrates.  

The reduced work functions of the TMD materials relative to the underlying 
substrate are clearly evident in the onset voltages for the LEER spectra (i.e. 
the onset shifts in accordance with the local work function of the surface). 
Most significantly, for the WSe2 islands, a predominant “tail” is observed in 
this onset, extending about 5V below the usual onset location. This tail is 
tentatively interpreted as arising from charging of the islands, perhaps due 
to polar termination at the edges of the TMD islands. Comparison of the 
data with simulated LEER spectra will be presented, as a test of this model 
for edge charge of the islands. 

Work supported by the Center for Low Energy Systems Technology 
(LEAST), one of six SRC STARnet Centers sponsored by MARCO and 
DARPA, and by NSF-EFRI-1433496. 

11:20am  2D+EM+NS+PS+SP+SS+TF-MoM10  Atomically-Thin 2D 
Layers of Group IV Semiconductors, Joshua Goldberger, The Ohio State 
University INVITED 
Similar to how carbon networks can be sculpted into low-dimensional 
allotropes such as fullerenes, nanotubes, and graphene with fundamentally 
different properties, it is possible to create similar “allotropes” of Ge or Sn 
with unique optoelectronic properties as well. Here, we will describe our 
recent success in the creation of hydrogen and organic-terminated group 14 
graphane analogues, from the topochemical deintercalation of precursor 
Zintl phases, such as CaGe2. We will discuss how the optical, electronic, 
and thermal properties of these materials can be systematically controlled 
by substituting either the surface ligand or via alloying with other Group 14 
elements. Additionally, we have also developed an epitopotaxial approach 
for integrating precise thicknesses of Germanane layers onto Ge wafers that 
combines the epitaxial deposition of CaGe2 precursor phases with the 
topotactic interconversion into the 2D material. Finally, we will describe 
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our recent efforts on the synthesis and crystal structures of Sn-containing 
graphane alloys in order to access novel topological phenomena predicted 
to occur in these graphanes. 
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