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2:20pm  2D+EM+IS+MC+NS+SP+SS-WeA1  The Effect of Defect 
Density on the Mechanical Properties of Graphene, Jonathan Willman, 
J.M. Gonzales, University of South Florida, R. Perriot, Los Alamos 
National Laboratory, I.I. Oleynik, University of South Florida 
Recent experiments involving nanoindentation of graphene have 
demonstrated counterintuitive weakening of Young’s modulus with 
increasing concentrations of point defects in graphene in contradiction to 
previous investigations. To fully resolve these inconsistencies we perform 
large-scale molecular dynamics simulations of nanoindentation under 
conditions of Atomic Force Microscopy (AFM) nanoindentation 
experiments. The reliable description of interatomic interactions is achieved 
by using recently developed screened environment-dependent bond order 
(SED-REBO) potential. The elastic properties of the defective graphene, the 
breaking strength and the mechanisms of fracture under indenter are 
investigated as a function of type of point defects as well as their 
concentration.  

2:40pm  2D+EM+IS+MC+NS+SP+SS-WeA2  Investigation of Grain 
Boundaries in CVD Grown MoS2, Kolyo Marinov, D. Ovchinnikov, D. 
Dumcenco, A. Kis, Ecole Polytechnique Fédérale de Lausanne (EPFL), 
Switzerland 
We present the characterization of grain boundaries in polycrystalline CVD-
grown MoS2 films. Epitaxial growth on sapphire substrates is achieved 
leading to preferred orientation of the domains, which is confirmed by 
transmission electron microscopy experiments. Using Scanning Kelvin 
probe microscopy the local potential drop across the three predominant 
types of grain boundaries in field effect transistors is investigated. These 
measurements demonstrate that the interfaces between single grains do not 
degrade the electrical conductivity, which is due to the well aligned growth 
of the single domains. Furthermore, the relatively high mobility of electrons 
in the polycrystalline material stays constant even in devices with channels 
of 80 µm containing multiple grains, separated by grain boundaries. Our 
approach is a step forward to fabrication of large-area, uniform and high 
quality single-layer CVD MoS2.  

3:00pm  2D+EM+IS+MC+NS+SP+SS-WeA3  Polycrystalline 2D 
Materials: Atomic Structure and Electronic Transport Properties, Oleg 
Yazyev, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 
 INVITED 
Grain boundaries and dislocations are intrinsic topological defects of 
polycrystalline materials, which inevitably affect their physical properties. 
In my talk, I will discuss the structure of topological defects in two-
dimensional (2D) materials such as graphene and monolayer transition 
metal dichalcogenides (TMDCs) [1].  

I will first introduce a general approach for constructing dislocations in 
graphene characterized by arbitrary Burgers vectors and grain boundaries 
covering the complete range of possible misorientation angles. By means of 
first-principles calculations we address the thermodynamic properties of 
grain boundaries revealing energetically favorable large-angle 
configurations as well as dramatic stabilization of small-angle 
configurations via the out-of-plane deformation, a remarkable feature of 
graphene as a two-dimensional material [2]. Both the presence of stable 
large-angle grain-boundary motifs and the out-of-plane deformation of 
small-angle configurations have recently been observed by scanning 
tunneling microscopy [3]. 

In the rest of my talk, I will focus on the electronic transport properties of 
polycrystalline 2D materials. Ballistic charge-carrier transmission across 
periodic grain boundaries is governed primarily by momentum 
conservation. Two distinct transport behaviors of such grain boundaries in 
graphene are predicted − either perfect reflection or high transparency with 
respect to low-energy charge carriers depending on the grain boundary 
periodicity [4]. It is also shown that certain periodic line defect structures 
can be engineered and offer opportunities for generating valley polarized 
charge carriers [5]. Beyond the momentum conservation picture we find 
that the transmission of low-energy charge carriers can be dramatically 
suppressed in the small-angle limit [6]. Unlike graphene, TMDCs combine 
a two-valley electronic band structure with strong spin-orbit effects. The 

latter can be employed for creating spin-polarized currents and adds yet 
another conservation law in the electronic transport across regular defects 
such as the frequently observed inversion domain boundaries [7,8]. 

* This work has been supported by the Swiss NSF, ERC and Graphene 
Flagship. 
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4:20pm  2D+EM+IS+MC+NS+SP+SS-WeA7  Defects Compensation 
and Refining Optical Luminescence in Organic/Transition Metal 
Dichalcogenide Heterostructure, J.H. Park, UC San Diego, A.M. Sanne, 
H.C.P. Movva, UT-Austin, S. Vishwanath, Cornell University, Il Jo Kwak, 
UC San Diego, H. Xing, Cornell University, J. Robertson, University of 
Cambridge, UK, S.K. Banerjee, UT-Austin, A.C. Kummel, UC San Diego 
Since layered transition-metal dichalcogenides(TMD) have demonstrated 
novel electronic and optoelectronic property, intense research has focused 
synthesis and integration into future electronic devices. Unlike graphene, 
TMD materials have band gaps, and these band structures can be tuned by 
thickness. However, in many cases, unintentional defects can be observed 
on TMD giving rise to the degradation of performance in the devices. Even 
for mechanical exfoliated TMD, there is a high density of defects, such as 
vacancies. For successful integration of TMD into devices, proper 
passivation of defects on TMD requires high stability in ambient conditions. 
In this study, a TiOPc monolayer was employed for passivation of defects 
to improve electrical and optical properties in TMD devices. Multilayer 
MoS2 flakes were cleaved in ambient condition and transferred into the 
UHV chamber; afterwards. TiOPc monolayers were deposited on the MoS2 
surfaces by organic molecular beam epitaxy. After deposition, TiOPc forms 
a monolayer with only few defects, and the TiOPc monolayer structure has 
square lattice in a 1.5x1.5 nm grid. This crystal structure indicates that each 
TiOPc in the monolayer is directed outward to vacuum. The deposited 
TiOPc layer has very high thermal stability on MoS2; the TiOPc layer on 
MoS2 requires annealing above of 673K for desorption. This high thermal 
stability indicates there are strong interaction between TiOPc and MoS2 
surface. STS shows the band gap of the monolayer is 1.8 eV, while bulk 
MoS2 has a 1.3eV band gap. Moreover, the Fermi level of TiOPc/bulk MoS2 
is shifted to the valence band, consistent with a P type shift. However, bulk 
MoS2 surface, where less than monolayer of TiOPc was deposited, has 
Fermi level shifted towards the conduction band, consistent with N type 
doping. In the single layer MoS2 deposited TiOPc monolayer, threshold bias 
is shifted from -30 V to near O V, indicating P-doping of MoS2. It can be 
hypothesized that the work function transition of MoS2 is changed as a 
function of thickness. Before deposition of the TiOPc monolayer, the 
defects peak corresponded to S vacancy is displayed at 1.7 eV in 
photoluminescence. Conversely, the deposition of TiOPc monolayer almost 
completely suppresses S vacancy peak located 1.7 eV. Moreover, in the 
single layer MoS2 FET, the on/off ratio is enhanced more than 2 orders 
magnitude. The similar charge transfer behavior also can be observed in 
TiOPc/WSe2; on the bilayer WSe2/HOPG, the TiOPc monolayer deposited 
on the first layer of WSe2 shows the a conduction band shifted Fermi level, 
while a TiOPc monolayer deposited on the second layer of WSe2 shows a 
valence band shifted Fermi level.  

4:40pm  2D+EM+IS+MC+NS+SP+SS-WeA8  Reactivity and 
Wettability of PVD Metals on 2D Transition Metal Dichalcogenides, 
Christopher Smyth, S. McDonnell, R. Addou, H. Zhu, C.L. Hinkle, R.M. 
Wallace, University of Texas at Dallas 
Transition metal dichalcogenides (TMDs) have been studied for years due 
to their tribological properties, but recent discoveries have illuminated 
unique opportunities for the use of single or few layer TMDs in electronics, 
specifically tunnel field effect transistors (TFETs). The properties of FETs 
fabricated with single and few layer TMDs have been investigated with 
some degree of success, but it has been shown via in-situ chemical analysis 
that interface interactions between certain contact metals and the underlying 
TMD are not fully understood1,2. 

In this study, the wettability and reactivity of various metals with a number 
of bulk TMDs (MoS2, HfSe2, SnSe2, etc.) were investigated. Multiple 
samples were processed in parallel to ensure that all sample sets saw 
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identical metal depositions. The metal-TMD interface was monitored in-situ 
using X-ray photoelectron spectroscopy (XPS) and metal film topography 
was imaged using atomic force microscopy (AFM). For some low work 
function metals, noticeable differences in interface chemistry were found 
between samples that saw high vacuum rather than UHV metal e-beam 
depositions. 

Significant variations in compatibility between contact metal and TMD 
were discovered. These variations were dependent upon the metal-TMD 
pair and the base pressure of the chamber prior to metal deposition. Au 
exhibits far superior wettability on MoSe2, where uniform thin films were 
achieved, compared to ReSe2, on which Au grows as clusters. Au 
wettability varies between that of thin films and clusters for the other TMDs 
studied. An Au thin film deposited on SnSe2 results in the formation of 
reaction products such as Sn metal, as evidenced by the evolution of 
different chemical states in the Sn 3d spectrum after deposition. Reactions 
between MoS2 and Sc producing Mo metal occur when Sc is deposited in 
UHV instead of HV. These results provide further understanding for the 
critical interface between Sc and TMD in high performance TFETs. 

This work was supported in part by NSF Award No. 1407765, the Center 
for Low Energy Systems Technology (LEAST), one of six centers 
supported by the STARnet phase of the Focus Center Research Program 
(FCRP), a Semiconductor Research Corporation program sponsored by 
MARCO and DARPA, and by the Southwest Academy on Nanoelectronics 
(SWAN) sponsored by the Nanoelectronic Research Initiative and NIST. 
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5:00pm  2D+EM+IS+MC+NS+SP+SS-WeA9  Defects and Boundaries 
in 2D Materials: Correlating Electronic Properties to Atomic 
Structures, An-Ping Li, Oak Ridge National Laboratory INVITED 
The quest for novel two-dimensional (2D) materials has led to the discovery 
of hybrid heterostructures of graphene and other 2D atomic films, which 
provide us fascinating playground for exploring defects and boundaries in a 
variety of atomic layers. Even in graphene itself, there usually exist large 
amount of extended topological defects, such as grain boundaries and 
changes in layer thickness, which divide graphene into grains and domains. 
These interfaces and boundaries can break the lattice symmetry and are 
believed to have a major impact on the electronic properties, especially the 
transport, in 2D materials.  

Here, we report on the electronic and transport properties of two types of 
defects studied by STM and multi-probe scanning tunneling potentiometry 
with a focus on the correlations to their atomic structures. The first type of 
defect is the monolayer-bilayer (ML-BL) boundaries in epitaxial graphene 
on SiC. By measuring the transport spectroscopy across individual ML-BL 
graphene boundaries, a greater voltage drop is observed when the current 
flows from monolayer to bilayer graphene than in the reverse direction, 
displaying an asymmetric electron transport upon bias polarity reversal [1, 
2]. Interestingly, this asymmetry is not from a typical nonlinear 
conductance due to electron transmission through an asymmetric potential. 
Rather, it indicates the opening of an energy gap at the Fermi energy. 
Another type of defect is 1D interface in hexagonal boron nitride (hBN) and 
graphene planar heterostructures, where a polar-on-nonpolar 1D boundary 
is expected to possess peculiar electronic states associated with edge states 
of graphene and the polarity of hBN [2]. By implementing the concept of 
epitaxy to 2D space, we grow monolayer hBN from fresh edges of 
monolayer graphene with lattice coherence, forming a 1D boundary [3]. 
STM/STS measurements reveal an abrupt 1D zigzag oriented boundary, 
with boundary states about 0.6 eV below or above the Fermi level 
depending on the termination of the hBN at the boundary [4]. The boundary 
states are extended along the boundary, and exponentially decay into the 
bulk of graphene and hBN. The origin of boundary states and the effect of 
the polarity discontinuity at the interface will be discussed. 

This research was conducted at the Center for Nanophase Materials 
Sciences, which is DOE Office of Science User Facility. 
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5:40pm  2D+EM+IS+MC+NS+SP+SS-WeA11  Metal Ion Intercalated 
2D Materials as Transparent Electrodes, Jiayu Wan*, W. Bao, F. Gu, 
University of Maryland, College Park, M. Fuhrer, Monash University, 
Malaysia, L. Hu, University of Maryland, College Park 
Transparent electrode materials are critical for optoelectronic devices such 
as touch screen and solar cells. Graphene has been widely studied as 
transparent electrodes for its unique physical properties. To further boost 
the performance of graphene based transparent electrodes, we novelized Li-
ion intercalation in graphene, and achieved highest performance of carbon 
based transparent electrodes.[1] Transmission as high as 91.7% with a sheet 
resistance of 3.0 ohm/sq is achieved for 19-layer LiC6, which corresponds 
to a figure of merit (Sigmadc/Sigmaopt) at 1,400, significantly higher than 
any other continuous transparent electrodes. The unconventional 
modification of ultrathin graphite optoelectronic properties is explained by 
the suppression of interband optical transitions and a small intraband Drude 
conductivity near the interband edge. To achieve low cost, large scale 
graphene-based transparent electrodes, we further developed Na-ion 
intercalated printed reduced graphene oxide (RGO) film[2]. Unlike pristine 
graphene that inhibits Na-ion intercalation, the larger layer-layer distance of 
RGO allows Na-ion intercalation, leading to simultaneously much higher 
DC conductivity and higher optical transmittance. The typical increase of 
transmittance from 36% to 79% and decrease of sheet resistance from 83 
kohms/sq to 311 ohms/sq in the printed network was observed after Na-ion 
intercalation. Compared with Li-intercalated graphene, Na-ion intercalated 
RGO shows much better environmental stability, which is likely due to the 
self-terminating oxidation of Na ions on the RGO edges. This study 
demonstrated the great potential of metal-ion intercalation to improve the 
performance of graphene-based materials for transparent conductor 
applications. 

Reference 

1. Jiayu Wana, Wenzhong Baoa, et al., Nature communications, 2014,5, 
4224. (a equally contribution) 
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6:00pm  2D+EM+IS+MC+NS+SP+SS-WeA12  Oxygen Reduction 
Reaction on Nitrogen-doped Graphene, Jun Nakamura, The University 
of Electro-Communications (UEC-Tokyo), Japan, A. Ichikawa, H. 
Matsuyama, A. Akaishi, The University of Electro-Communications (UEC-
Tokyo) 
Recently, several groups have reported high oxygen reduction reaction 
(ORR) activities in nitrogen-doped carbon nanomaterials which are 
candidates of metal-free catalysts for ORR [1]. Lee et al. have successfully 
fabricated nitrogen-doped graphene with the high ORR activity in acid 
media [2]. It has been confirmed that local atomic configurations of dopants 
in nitrogen-doped graphene are classified into three functional groups 
(pyrrole-like, pyridine-like, and graphite-like configurations) [3,4]. 
However, the mechanism of the ORR on the nitrogen-doped graphene has 
not fully understood. 

In this work, we examine the ORR on the nitrogen-doped graphene 
containing the graphite-like N in a basal plane using first-principles 
calculations. In general, the ORR occurs mainly two pathways: The two-
electron pathway (2e-) that is reduced to hydrogen peroxide (H2O2), and 
the direct four-electron pathway (4e-) that reduces to water (H2O). 
Thermodynamic electrode potentials of each process at standard conditions 
are about 0.68V (2e-) and 1.23V (4e-), respectively. In case of the 
associative mechanism for the two- and four- electron reduction pathways, 
the electrocatalytic activity is governed by the stability of reaction 
intermediates like OOH*, OH*, and O* (where “*” refers to a surface site). 
Free energies of the reaction intermediates have been calculated based on 
the computational hydrogen electrode model suggested by Nørskov et al. 
[5]. We have taken account of effects of electrode potential, Ph of a 
solution, a local electric field in double layer, and water environment. 

We have constructed energy diagrams at several electrode potentials on the 
basis of the first-principles calculations. It has been shown that the 2e- and 
4e- reduction processes proceed at potentials up to about 0.5V and 0.8V, 
respectively. This means that we can control the reduction pathway for the 
nitrogen-doped graphene with the graphite-like N. Proton-electron transfer 
to OOH* (the 2e- pathway), and the formation of OOH* (the 4e- pathway) 
are confirmed to be the rate-limiting steps, respectively. Density 
dependence of N on the ORR activity will also be discussed in the 
presentation. 
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