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8:00am  SP+2D+AS+EM+MC+NS+SS-ThM1  Investigation of the 
Electronic and Structural Properties of Metal Free Naphthalocyanine 
Vapor Deposited on Au(111), Bryan Wiggins, University of Chicago, 
K.W. Hipps, Washington State University 
Naphthalocyanines (Ncs) are promising candidates for future components in 
electronic devices and applications. To maximize the efficiency of Nc 
devices, it is critical to understand their structural and electronic properties 
and how these are impacted by deposition methods. The formation of a 
metal free naphthalocyanine (H2Nc) self-assembled monolayer on a 
Au(111) crystal was investigated by scanning tunneling microscopy under 
ultra-high-vacuum conditions at room temperature. A rigorous purification 
and processing procedure was developed to produce high purity, low defect, 
and well-ordered monolayers. High-resolution STM images reveal epitaxial 
growth of H2Nc on Au(111) with the observed structure having a molecular 
spacing of 1.6 ± 0.05 nm, with molecules orientated slightly off (roughly 
2.5°) the low density packing direction of Au(111). A commensurate 
structure having 4 molecules per unit cell and unit cell parameters of A = 
3.25 ± 0.05 nm, B = 3.17 ± 0.05 nm, and α = 87.5 ± 2° is proposed. Orbital-
mediated tunneling spectroscopy was used to examine the electronic 
properties of individual molecules within the thin film. The first ionization 
potential and electron affinity of H2Nc adsorbed on Au(111) were measured 
to be −0.68 ± 0.03 and 1.12 ± 0.02 eV, relative to the Fermi energy.  

8:20am  SP+2D+AS+EM+MC+NS+SS-ThM2  The Fundamentals of 
Charge Transport at Oxide and Ferroelectric Interfaces, Ramsey 
Kraya, L.Y. Kraya, University of Pennsylvania 
Here we investigate how charge transport properties at metal-semiconductor 
interfaces scale down to the nanoscale regime, comparing the properties to 
macroscopic interfaces and providing a perspective on what it means to 
device manufacturing. Strontium titanate - the prototypical oxide material - 
has been widely studied for applications in thermoelectrics, nanoelectronics, 
catalysis, and other uses, and behaves as an n-type semiconductor when 
doped. We investigated how charge transport is effected at interfaces to 
stronitium titanate under a wide range of conditions - by varying contact 
size, interface shape, dopant concentration, and surface structure and in 
various combinations. The results of the analysis have wide ranging 
implications, especially for ferroelectric oxide materials and serves as the 
basis for understanding and controlling switching effects - both polarization 
and oxygen migration based switching. 

8:40am  SP+2D+AS+EM+MC+NS+SS-ThM3  Epitaxial Graphene on 
Nanostructured Silicon Carbide, Phillip First, Georgia Institute of 
Technology INVITED 
Graphene grown epitaxially on silicon carbide conforms to nanofacetted 
step edges, even for step heights of many nanometers. The “sidewall” 
nanoribbons that result show astounding transport characteristics (~15 um 
ballistic length at room temperature), as demonstrated by others,1 but the 
physical basis for these results is still not certain. In our STM measurements 
of sidewall nanoribbons, we find an extended 1D region with electronic 
structure much different than 2D graphene. Spectroscopic results on 
graphene near nanofacet corners indicate a strain gradient and a rapid 
change in the doping. Such strong gradients may be key to understanding 
the ballistic transport in this system. P  
1J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, AminaTaleb-
Ibrahimi, A.-P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp and 
W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene 
nanoribbons,” Nature, 506, 349 (2014).  

9:20am  SP+2D+AS+EM+MC+NS+SS-ThM5  Conductivity of Si(111) - 
7 × 7: The Role of a Single Atomic Step, B. Martins, University of Alberta 
and The National Institute for Nanotechnology, Canada, M. Smeu, H. Guo, 
McGill University, Canada, Robert Wolkow, University of Alberta and The 
National Institute for Nanotechnology, Canada 
The Si(111) - 7 × 7 surface is one of the most interesting semiconductor 
surfaces because of its 

complex reconstruction and fascinating electronic properties. While it is 
known that the Si - 7 × 7 is 

a conducting surface, the exact surface conductivity has eluded consensus 
for decades as measured 

values differ by 7 orders of magnitude. Here we report a combined STM 
and transport measurement 

with ultra-high spatial resolution and minimal interaction with the sample, 
and quantitatively determine the intrinsic conductivity of the Si - 7 × 7 
surface. This is made possible by the capability of 

measuring transport properties with or without a single atomic step between 
the measuring probes: 

we found that even a single step can reduce the surface conductivity by two 
orders of magnitude. 

Our first principles quantum transport calculations confirm and lend insight 
to the experimental 

observation. 

9:40am  SP+2D+AS+EM+MC+NS+SS-ThM6  Asymmetric Electron 
Transport Revealed at Monolayer-Bilayer Graphene Junctions by 
Atomic-Scale Scanning Tunneling Potentiometry, K. Clark, X. Zhang, J. 
Park, Oak Ridge National Laboratory, G. Gu, University of Tennessee, G. 
He, R.M. Feenstra, Carnegie Mellon University, An-Ping Li, Oak Ridge 
National Laboratory 
The quest for novel two-dimensional (2D) materials has led to the discovery 
of hybrid heterostructures of graphene and other 2D atomic films [1]. These 
heterojunctions provide us fascinating playground for exploring electronic 
and transport properties in 2D materials. Even in graphene itself, there 
usually exist large amount of extended topological defects, such as grain 
boundaries, changes in layer thickness, and substrate steps, which divide 
graphene into grains and domains. These interfaces and boundaries can 
break the lattice symmetry and are believed to have a major impact on the 
electronic properties, especially the transport, in 2D materials.  

Here, we present our recent study on an asymmetric electron transport upon 
bias polarity reversal at individual monolayer-bilayer (ML-BL) boundaries 
in epitaxial graphene on SiC (0001), revealed by multi-probe scanning 
tunneling potentiometry [2,3]. A greater voltage drop is observed when the 
current flows from monolayer to bilayer graphene than in the reverse 
direction, and the difference remains nearly unchanged when bias exceeds a 
threshold. A thermovoltage is measured across the boundary due to the 
thermopower difference between the two sides, which however is too small 
to account for the observed asymmetry. Interestingly, this asymmetry is not 
from a typical nonlinear conductance due to electron transmission through 
an asymmetric potential. Rather, it indicates the opening of an energy gap at 
the Fermi energy. Our theoretical analysis finds that Friedel charge 
oscillation opens a gap for electrons with wave vectors perpendicular to the 
boundary. The Friedel gaps are different on the monolayer and bilayer 
sides, which can shift under bias and lead to asymmetric transport upon 
reversing the bias polarity. A quantitative agreement is seen between 
experiment and theory on both the sign and the magnitude of the 
asymmetry. 

1 “Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride 
Templated by Graphene Edges”, L. Liu, J. Park, D. A. Siegel, K. F. 
McCarty, K. W. Clark, W. Deng, L. Basile, J.-C. Idrobo, A.-P. Li, G. Gu, 
Science343, 163-167 (2014).  

2 “Spatially Resolved Mapping of Electrical Conductance around 
Individual Domain (Grain) Boundaries in Graphene”, K. W. Clark, X.-G. 
Zhang, I. V. Vlassiouk, G. He, R. M. Feenstra, and A.-P. Li, ACS Nano. 7 
(9), 7956-7966 (2013).  

3 “Friedel Oscilation-Induced Energy Gap Manifested as Transport 
Asymmetric at Monolayer-Bilayer Graphene Boundaries”, K. W. Clark, X.-
G. Zhang, G. Gu, G. He, R. M. Feenstra, and A.-P. Li, arXiv: 1401.1796, 
Physical Review X4 (1), 011021 (2014). 

11:00am  SP+2D+AS+EM+MC+NS+SS-ThM10  Defect-mediated 
Transport in CVD-grown Monolayer MoS2, Corentin Durand, J. 
Fowlkes, Oak Ridge National Laboratory, S. Najmaei, J. Lou, Rice 
University, A.P. Li, Oak Ridge National Laboratory 
Transition metal dichalcogenides like molybdenum disulphide (MoS2) have 
attracted great interest as candidate to fill the need of 2 dimensional 
semiconductor materials. By controlling the thickness, the bandgap of MoS2 
thin films can be tuned from 1.2 eV (bulk material, indirect bandgap) to 1.8 
eV (monolayer film, direct bandgap). Recently, researchers succeeded in 
growing monolayered MoS2 by chemical vapor deposition (CVD) on silicon 
dioxide (SiO2) substrate, showing the possibility of low cost scalable device 
fabrication. However, the mobility reported on exfoliated MoS2 monolayers 
exceeds 200 cm2.V-1.s-1, whereas the measurements realized on CVD 
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growth MoS2 monolayers reveal a mobility value that is usually 1-2 orders 
of magnitude lower. Here, we study the transport properties of CVD-grown 
monolayer on SiO2/Si substrate. We directly measure the resistivity and the 
mobility of the material with a field-effect transistor architecture by using a 
cryogenic four-probe scanning tunneling microscope (STM), the Si 
substrate being used as back-gate. In order to ensure reliable electrical 
contacts, we fabricate platinum pads (4x4 µm2) on individual MoS2 crystal 
domains by using an electron-beam induced deposition technique. The 
combination of the STM scanners and a scanning electron microscope 
(SEM) enables us to connect the STM tips on those pads and thereby 
establish the contacts on this material without any subsequent lithography 
process, avoiding contaminations introduced by other technological steps. 
An electron hopping process in localized charge trapping states appears to 
dominate the transport behavior. We performed temperature-dependent 
measurements in the range of 82 K to 315 K which demonstrate a variable 
range hopping (VRH) transport with a very low mobility. Furthermore, the 
effects of electronic irradiation are examined by exposing the film to 
electron beam in the SEM in an ultra-high vacuum environment. We found 
that the irradiation process affect the mobility and also the carrier 
concentration of the material, with conductance showing a peculiar time-
dependent relaxation behavior. It is suggested that the presence of defects 
such as vacancies and antisites create charge trapping states, leading to the 
low mobility. This is consistent with recent density functional theory 
calculations where these defects are shown to create localized gap states 
that can act as scattering centers and thereby reduce the mobility.  

11:20am  SP+2D+AS+EM+MC+NS+SS-ThM11  Coherent One 
Dimensional Boundaries in Graphene and Hexagonal Boron Nitride 
Heterostructures, Jewook Park, Oak Ridge National Laboratory, L. Liu, 
The University of Tennessee Knoxville, D.A. Siegel, K.F. McCarty, Sandia 
National Laboratories, L. Basile, J.-C. Idrobo, K. Clark, ORNL, W. Deng, 
The Univ. of Tennessee Knoxville, C.P. Durand, ORNL, G. Gu, The Univ. 
of Tennessee Knoxville, A.P. Li, ORNL 
The quest for novel two-dimensional (2D) materials has led to the discovery 
of hybrid heterostructures where graphene and other atomic layer films such 
as monolayer hexagonal boron nitride (hBN) form phase-separated domains 
or both materials grow epitaxially onto a common crystalline substrate. By 
implementing the concept of epitaxy to 2D space, we developed and applied 
a new growth technique to hybrid isostructural but electrically dissimilar 
materials, such as the 2D epitaxial growth of hBN templated by graphene 
edge [1]. Scanning tunneling microscopy and spectroscopy measurements 
revealed a single-atomic-layer, in-plane heterostructure between graphene 
and hBN, as well as an abrupt 1D zigzag oriented boundary. In addition, the 
dI/dV conductance map unveiled the 1D interfacial states that are extended 
along, but localized at the boundary. We investigated spatial and energetic 
distributions of 1D boundary states. Also, low-energy electron microscopy 
and micro low-energy electron diffraction confirmed the heterostructure at 
mesoscopic scale and established that the graphene edge solely determines 
the crystallography of the hBN regardless of underlying the Cu(100) lattice. 
The Z-contrast scanning transmission electron microscopy further indicates 
an atomically sharp interface with a transition width of ~0.5 nm. We 
suggest that the graphene-hBN epitaxial heterostructure provides an 
excellent platform to explore heteroepitaxy in 2D space, and the unique 
functionalities at the 1D interface. [1] Lei Liu et al. Science343 163 (2014) 

11:40am  SP+2D+AS+EM+MC+NS+SS-ThM12  Charge and Spin 
Density Waves in Quasi One-Dimensional Atomic Wires, Herbert 
Pfnür, Leibniz Universität, Germany INVITED 
Although free one-dimensional (1D) objects should exist only at T=0, 
atomic single wires or arrays embedded into a two- or three-dimensional 
environment exist even at room temperature and above, since they are 
stabilized by lateral interactions. These interactions not only stabilize, but 
also strongly modify the properties of the wires. Their 2D or 3D coupling, 
however, does not generally prevent observation of 1D properties with their 
complex variety of instabilities. Furthermore, these coupling can result in 
special 1D behavior not predicted by standard theories either in 1D or 2D. I 
will show several examples how atomic wires and wire arrays grown by 
self-assembly on semiconducting surfaces of Si and Ge acting as insulating 
substrates can be used to study in detail fundamental aspects of low-
dimensional physics, such as charge density waves [1] and Luttinger liquid 
behavior [2], partially under explicit control of the atomic structure. Due to 
the low symmetry in these structures, large Rashba-type spin-orbit coupling 
is expected to lift the spin degeneracy of the metal-induced surface states. In 
this context new types of spin order were proposed , e.g. for Au/Si(553) [3] 
and found to be consistent with experiment. As a further example, the 
Pb/Si(557) system close to monolayer coverage turned out to be an 
intruiging model system that demonstrates the whealth of phenomena to be 
expected in quasi-1D physics. Adsorbate induced electronic stabilization 
leads to (223) refacetting of the (557) surface, to opening of a band gap, to 
Fermi nesting normal to the steps [4]., and to the formation of a charge 

density wave. Rashba splitting is so large that it causes in-plane anti-
ferromagnetic spin polarization along the steps with twice the step 
periodicity resulting in a combined spin-charge density wave. New 
superstructures are formed by an excess Pb coverage up to 0.1ML due to 
ordered step decoration indicating strong electron-electron correlation 
across steps. This leads to new long range ordered states and formation of a 
sequence of 1D charge density waves up to a concentration of 1.5 ML, but 
also, as very recent angular and spin resolved photoemission studies show, 
to new ordered spin states.  

[1] T. Tanikawa et.al. Phys. Rev. Lett. 93, 016801 (2004).  

[2] C. Blumenstein et.al. Nat. Phys. 7, 776 (2011).  

[3] S.C. Erwin, F. J. Himpsel, Nature Communications 1, 58 (2010); J. 
Aulbach et al. Phys. Rev. Lett. 111, 137203 (2013)  

[4] C. Tegenkamp, D. Lükermann, H. Pfnür, B. Slomski, G. Landolt H. Dil, 
Phys. Rev. Lett. 109,  

266401 (2012). 
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