Thursday Morning, November 13, 2014

Scanning Probe Microscopy Focus Topic Room: 312 - Session SP+2D+AS+EM+MC+NS+SS-ThM

Probing Electronic and Transport Properties

Moderator: An-Ping Li, ORNL, Corentin Durand, ORNL

8:00am SP+2D+AS+EM+MC+NS+SS-ThM1 Investigation of the Electronic and Structural Properties of Metal Free Naphthalocyanine Vapor Deposited on Au(111), *Bryan Wiggins*, University of Chicago, *K.W. Hipps*, Washington State University

Naphthalocyanines (Ncs) are promising candidates for future components in electronic devices and applications. To maximize the efficiency of Nc devices, it is critical to understand their structural and electronic properties and how these are impacted by deposition methods. The formation of a metal free naphthalocyanine (H2Nc) self-assembled monolayer on a Au(111) crystal was investigated by scanning tunneling microscopy under ultra-high-vacuum conditions at room temperature. A rigorous purification and processing procedure was developed to produce high purity, low defect, and well-ordered monolayers. High-resolution STM images reveal epitaxial growth of H₂Nc on Au(111) with the observed structure having a molecular spacing of 1.6 ± 0.05 nm, with molecules orientated slightly off (roughly 2.5°) the low density packing direction of Au(111). A commensurate structure having 4 molecules per unit cell and unit cell parameters of A = 3.25 ± 0.05 nm, $B = 3.17 \pm 0.05$ nm, and $\alpha = 87.5 \pm 2^{\circ}$ is proposed. Orbitalmediated tunneling spectroscopy was used to examine the electronic properties of individual molecules within the thin film. The first ionization potential and electron affinity of H₂Nc adsorbed on Au(111) were measured to be -0.68 ± 0.03 and 1.12 ± 0.02 eV, relative to the Fermi energy.

8:20am SP+2D+AS+EM+MC+NS+SS-ThM2 The Fundamentals of Charge Transport at Oxide and Ferroelectric Interfaces, *Ramsey Kraya*, *L.Y. Kraya*, University of Pennsylvania

Here we investigate how charge transport properties at metal-semiconductor interfaces scale down to the nanoscale regime, comparing the properties to macroscopic interfaces and providing a perspective on what it means to device manufacturing. Strontium titanate - the prototypical oxide material - has been widely studied for applications in thermoelectrics, nanoelectronics, catalysis, and other uses, and behaves as an n-type semiconductor when doped. We investigated how charge transport is effected at interfaces to stronitum titanate under a wide range of conditions - by varying contact size, interface shape, dopant concentration, and surface structure and in various combinations. The results of the analysis have wide ranging implications, especially for ferroelectric oxide materials and serves as the basis for understanding and controlling switching effects - both polarization and oxygen migration based switching.

8:40am SP+2D+AS+EM+MC+NS+SS-ThM3 Epitaxial Graphene on Nanostructured Silicon Carbide, *Phillip First*, Georgia Institute of Technology INVITED

Graphene grown epitaxially on silicon carbide conforms to nanofacetted step edges, even for step heights of many nanometers. The "sidewall" nanoribbons that result show astounding transport characteristics (~15 um ballistic length at room temperature), as demonstrated by others,¹ but the physical basis for these results is still not certain. In our STM measurements of sidewall nanoribbons, we find an extended 1D region with electronic structure much different than 2D graphene. Spectroscopic results on graphene near nanofacet corners indicate a strain gradient and a rapid change in the doping. Such strong gradients may be key to understanding the ballistic transport in this system. P

¹J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, AminaTaleb-Ibrahimi, A.-P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp and W. A. de Heer, "Exceptional ballistic transport in epitaxial graphene nanoribbons," *Nature*, **506**, 349 (2014).

9:20am SP+2D+AS+EM+MC+NS+SS-ThM5 Conductivity of Si(111) -7 × 7: The Role of a Single Atomic Step, *B. Martins*, University of Alberta and The National Institute for Nanotechnology, Canada, *M. Smeu*, *H. Guo*, McGill University, Canada, *Robert Wolkow*, University of Alberta and The National Institute for Nanotechnology, Canada

The Si(111) - 7×7 surface is one of the most interesting semiconductor surfaces because of its

complex reconstruction and fascinating electronic properties. While it is known that the Si - 7×7 is

a conducting surface, the exact surface conductivity has eluded consensus for decades as measured

values differ by 7 orders of magnitude. Here we report a combined STM and transport measurement

with ultra-high spatial resolution and minimal interaction with the sample, and quantitatively determine the intrinsic conductivity of the Si - 7×7 surface. This is made possible by the capability of

measuring transport properties with or without a single atomic step between the measuring probes:

we found that even a single step can reduce the surface conductivity by two orders of magnitude.

Our first principles quantum transport calculations confirm and lend insight to the experimental

observation.

9:40am SP+2D+AS+EM+MC+NS+SS-ThM6 Asymmetric Electron Transport Revealed at Monolayer-Bilayer Graphene Junctions by Atomic-Scale Scanning Tunneling Potentiometry, K. Clark, X. Zhang, J. Park, Oak Ridge National Laboratory, G. Gu, University of Tennessee, G. He, R.M. Feenstra, Carnegie Mellon University, An-Ping Li, Oak Ridge National Laboratory

The quest for novel two-dimensional (2D) materials has led to the discovery of hybrid heterostructures of graphene and other 2D atomic films [1]. These heterojunctions provide us fascinating playground for exploring electronic and transport properties in 2D materials. Even in graphene itself, there usually exist large amount of extended topological defects, such as grain boundaries, changes in layer thickness, and substrate steps, which divide graphene into grains and domains. These interfaces and boundaries can break the lattice symmetry and are believed to have a major impact on the electronic properties, especially the transport, in 2D materials.

Here, we present our recent study on an asymmetric electron transport upon bias polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by multi-probe scanning tunneling potentiometry [2,3]. A greater voltage drop is observed when the current flows from monolayer to bilayer graphene than in the reverse direction, and the difference remains nearly unchanged when bias exceeds a threshold. A thermovoltage is measured across the boundary due to the thermopower difference between the two sides, which however is too small to account for the observed asymmetry. Interestingly, this asymmetry is not from a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of an energy gap at the Fermi energy. Our theoretical analysis finds that Friedel charge oscillation opens a gap for electrons with wave vectors perpendicular to the boundary. The Friedel gaps are different on the monolayer and bilayer sides, which can shift under bias and lead to asymmetric transport upon reversing the bias polarity. A quantitative agreement is seen between experiment and theory on both the sign and the magnitude of the asymmetry.

1 "Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges", L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J.-C. Idrobo, A.-P. Li, G. Gu, *Science***343**, 163-167 (2014).

2 "Spatially Resolved Mapping of Electrical Conductance around Individual Domain (Grain) Boundaries in Graphene", K. W. Clark, X.-G. Zhang, I. V. Vlassiouk, G. He, R. M. Feenstra, and A.-P. Li, *ACS Nano.* **7** (9), 7956-7966 (2013).

3 "Friedel Oscilation-Induced Energy Gap Manifested as Transport Asymmetric at Monolayer-Bilayer Graphene Boundaries", K. W. Clark, X.-G. Zhang, G. Gu, G. He, R. M. Feenstra, and A.-P. Li, *arXiv:* 1401.1796, *Physical Review X4* (1), 011021 (2014).

11:00am SP+2D+AS+EM+MC+NS+SS-ThM10 Defect-mediated Transport in CVD-grown Monolayer MoS₂, Corentin Durand, J. Fowlkes, Oak Ridge National Laboratory, S. Najmaei, J. Lou, Rice University, A.P. Li, Oak Ridge National Laboratory

Transition metal dichalcogenides like molybdenum disulphide (MoS₂) have attracted great interest as candidate to fill the need of 2 dimensional semiconductor materials. By controlling the thickness, the bandgap of MoS₂ thin films can be tuned from 1.2 eV (bulk material, indirect bandgap) to 1.8 eV (monolayer film, direct bandgap). Recently, researchers succeeded in growing monolayered MoS₂ by chemical vapor deposition (CVD) on silicon dioxide (SiO₂) substrate, showing the possibility of low cost scalable device fabrication. However, the mobility reported on exfoliated MoS₂ monolayers exceeds 200 cm².V⁻¹.s⁻¹, whereas the measurements realized on CVD

growth MoS₂ monolayers reveal a mobility value that is usually 1-2 orders of magnitude lower. Here, we study the transport properties of CVD-grown monolayer on SiO₂/Si substrate. We directly measure the resistivity and the mobility of the material with a field-effect transistor architecture by using a cryogenic four-probe scanning tunneling microscope (STM), the Si substrate being used as back-gate. In order to ensure reliable electrical contacts, we fabricate platinum pads (4x4 μ m²) on individual MoS₂ crystal domains by using an electron-beam induced deposition technique. The combination of the STM scanners and a scanning electron microscope (SEM) enables us to connect the STM tips on those pads and thereby establish the contacts on this material without any subsequent lithography process, avoiding contaminations introduced by other technological steps. An electron hopping process in localized charge trapping states appears to dominate the transport behavior. We performed temperature-dependent measurements in the range of 82 K to 315 K which demonstrate a variable range hopping (VRH) transport with a very low mobility. Furthermore, the effects of electronic irradiation are examined by exposing the film to electron beam in the SEM in an ultra-high vacuum environment. We found that the irradiation process affect the mobility and also the carrier concentration of the material, with conductance showing a peculiar timedependent relaxation behavior. It is suggested that the presence of defects such as vacancies and antisites create charge trapping states, leading to the low mobility. This is consistent with recent density functional theory calculations where these defects are shown to create localized gap states that can act as scattering centers and thereby reduce the mobility.

11:20am SP+2D+AS+EM+MC+NS+SS-ThM11 Coherent One Dimensional Boundaries in Graphene and Hexagonal Boron Nitride Heterostructures, *Jewook Park*, Oak Ridge National Laboratory, *L. Liu*, The University of Tennessee Knoxville, *D.A. Siegel, K.F. McCarty*, Sandia National Laboratories, *L. Basile, J.-C. Idrobo, K. Clark*, ORNL, *W. Deng*, The Univ. of Tennessee Knoxville, *C.P. Durand*, ORNL, *G. Gu*, The Univ. of Tennessee Knoxville, *A.P. Li*, ORNL

The quest for novel two-dimensional (2D) materials has led to the discovery of hybrid heterostructures where graphene and other atomic layer films such as monolayer hexagonal boron nitride (hBN) form phase-separated domains or both materials grow epitaxially onto a common crystalline substrate. By implementing the concept of epitaxy to 2D space, we developed and applied a new growth technique to hybrid isostructural but electrically dissimilar materials, such as the 2D epitaxial growth of hBN templated by graphene edge [1]. Scanning tunneling microscopy and spectroscopy measurements revealed a single-atomic-layer, in-plane heterostructure between graphene and hBN, as well as an abrupt 1D zigzag oriented boundary. In addition, the dI/dV conductance map unveiled the 1D interfacial states that are extended along, but localized at the boundary. We investigated spatial and energetic distributions of 1D boundary states. Also, low-energy electron microscopy and micro low-energy electron diffraction confirmed the heterostructure at mesoscopic scale and established that the graphene edge solely determines the crystallography of the hBN regardless of underlying the Cu(100) lattice. The Z-contrast scanning transmission electron microscopy further indicates an atomically sharp interface with a transition width of ~0.5 nm. We suggest that the graphene-hBN epitaxial heterostructure provides an excellent platform to explore heteroepitaxy in 2D space, and the unique functionalities at the 1D interface. [1] Lei Liu et al. Science343 163 (2014)

11:40am SP+2D+AS+EM+MC+NS+SS-ThM12 Charge and Spin Density Waves in Quasi One-Dimensional Atomic Wires, *Herbert Pfnür*, Leibniz Universität, Germany INVITED

Although free one-dimensional (1D) objects should exist only at T=0, atomic single wires or arrays embedded into a two- or three-dimensional environment exist even at room temperature and above, since they are stabilized by lateral interactions. These interactions not only stabilize, but also strongly modify the properties of the wires. Their 2D or 3D coupling, however, does not generally prevent observation of 1D properties with their complex variety of instabilities. Furthermore, these coupling can result in special 1D behavior not predicted by standard theories either in 1D or 2D. I will show several examples how atomic wires and wire arrays grown by self-assembly on semiconducting surfaces of Si and Ge acting as insulating substrates can be used to study in detail fundamental aspects of lowdimensional physics, such as charge density waves [1] and Luttinger liquid behavior [2], partially under explicit control of the atomic structure. Due to the low symmetry in these structures, large Rashba-type spin-orbit coupling is expected to lift the spin degeneracy of the metal-induced surface states. In this context new types of spin order were proposed , e.g. for Au/Si(553) [3] and found to be consistent with experiment. As a further example, the Pb/Si(557) system close to monolayer coverage turned out to be an intruiging model system that demonstrates the whealth of phenomena to be expected in quasi-1D physics. Adsorbate induced electronic stabilization leads to (223) refacetting of the (557) surface, to opening of a band gap, to Fermi nesting normal to the steps [4]., and to the formation of a charge density wave. Rashba splitting is so large that it causes in-plane antiferromagnetic spin polarization along the steps with twice the step periodicity resulting in a combined spin-charge density wave. New superstructures are formed by an excess Pb coverage up to 0.1ML due to ordered step decoration indicating strong electron-electron correlation across steps. This leads to new long range ordered states and formation of a sequence of 1D charge density waves up to a concentration of 1.5 ML, but also, as very recent angular and spin resolved photoemission studies show, to new ordered spin states.

[1] T. Tanikawa et.al. Phys. Rev. Lett. 93, 016801 (2004).

[2] C. Blumenstein et.al. Nat. Phys. 7, 776 (2011).

[3] S.C. Erwin, F. J. Himpsel, Nature Communications 1, 58 (2010); J. Aulbach et al. Phys. Rev. Lett. 111, 137203 (2013)

[4] C. Tegenkamp, D. Lükermann, H. Pfnür, B. Slomski, G. Landolt H. Dil, Phys. Rev. Lett. 109,

266401 (2012).

Authors Index

Bold page numbers indicate the presenter

