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8:00am  IS+AS+MC+SS-WeM1  In Situ Studies on the Behavior of 
Metal/Oxide Catalysts during the Water-gas Shift Reaction, Jose 
Rodriguez, D. Stacchiola, S. Senanayake, J. Hanson, Brookhaven National 
Laboratory INVITED 
In this talk, it will be shown how a series of in-situ techniques [X-ray 
diffraction (XRD), pair-distribution-function analysis (PDF), X-ray 
absorption spectroscopy (XAS), environmental scanning tunneling 
microscopy (ESTM), infrared spectroscopy (IR), ambient-pressure X-ray 
photoelectron spectroscopy (AP-XPS)] can be combined to perform 
detailed studies of the structural, electronic and chemical properties of 
metal/oxide catalysts used for the production of hydrogen through the 
water-gas shift reaction (WGS, CO + H2O → H2 + CO2). Under reaction 
conditions most WGS catalysts undergo chemical transformations that 
drastically modify their composition with respect to that obtained during the 
synthesis process. The active phase of catalysts which combine Cu, Au or 
Pt with oxides such as ZnO, CeO2, TiO2, CeOx/TiO2 and Fe2O3 essentially 
involves nanoparticles of the reduced noble metals. The oxide support 
undergoes partial reduction and is not a simple spectator, facilitating the 
dissociation of water and in some cases modifying the chemical properties 
of the supported metal. Therefore, to optimize the performance of these 
catalysts one must take into consideration the properties of the metal and 
oxide phases. IR and AP-XPS have been used to study the reaction 
mechanism for the WGS on the metal/oxide catalysts. Data of IR 
spectroscopy indicate that formate species are not necessarily involved in 
the main reaction path for the water-gas shift on Cu-, Au- and Pt-based 
catalysts. Thus, a pure redox mechanism or associative mechanisms that 
involve either carbonate-like (CO3, HCO3) or carboxyl (HOCO) species 
should be considered. In the last two decades, there have been tremendous 
advances in our ability to study catalytic materials under reaction conditions 
and we are moving towards the major goal of fully understanding how the 
active sites for the production of hydrogen through the WGS actually work. 

8:40am  IS+AS+MC+SS-WeM3  Tuning Catalytic Performance of 
Bimetallic Nanoparticle Catalysts through a Single or Sequential Post-
Synthesis Reaction in a Gas Phase, F. Tao, J. Shan, S. Zhang, L.T. 
Nguyen, University of Notre Dame, A. Frenkel, Yeshiva University, J. 
Greeley, Purdue University, Shibi Zeng, University of Notre Dame 
Besides a sophisticated synthesis of bimetallic nanocatalysts in a colloidal 
solution, a post-synthesis reaction in a gaseous phase is a complementary 
method to tailor the surface structure and composition of a bimetallic 
nanocatalyst to tune its catalytic performance. Here we illustrate the 
capability of creating a new catalyst surface exhibiting a lower activation 
barrier through segregation of a bimetallic catalyst in a post-synthesis 
reaction in a reactive gaseous environment. In-situ surface chemistry of 
bimetallic nanocatalysts were analyzed with AP-XPS. Coordination 
environment of Pt and Cu atoms under different reaction conditions was 
tracked with in-situ EXAFS. The surface restructuring was simulated with 
DFT calculation from thermodynamic,ci point of view. The composition 
and geometric structure of the newly formed surface of the bimetallic 
nanocatalysts strongly depend on the reactant gas used in the post-synthesis 
reaction. A further sequential reaction in a different gas after the initial post-
synthesis reaction in a gas forms a different catalyst surface. A post-
synthesis reaction of a Pt-Cu regular nanocube (Pt-Cu RNC) in hydrogen 
forms a near surface alloy (NSA) which exhibits an activation barrier of 39 
kJ/mol for CO oxidation, much lower than pure Pt nanocubes. These studies 
demonstrate a method of tuning catalytic performances and generate 
another catalytic phase through a post-synthesis reaction in a gas phase.  

9:00am  IS+AS+MC+SS-WeM4  In Situ Characterization of Metal-
Based Ionic Liquids using X-ray Spectroscopy, Robert Meulenberg, 
University of Maine, C. Apblett, H. Pratt, T. Anderson, Sandia National 
Laboratories 
Energy storage for vehicles is advancing rapidly, and one of the possible 
contenders for a battery that can quickly be recharged is a redox flow 
battery, which uses liquids that are pumped into the battery to be charged or 
discharged, and then removed to storage containers. This makes the 
chemistry roughly analogous to liquid fuels employment, where the charged 
chemistry is pumped into the battery, discharged, and then pumped into a 

waste container, similar to fuel pumped into an engine, ignited, and then 
expelled through the tailpipe. Unlike internal combustion engines, however, 
the discharged product is retained on the vehicle, and can be subsequently 
either recharged on the vehicle, or pumped off the vehicle to be recharged at 
a filling station, while replacing with freshly charged material. 

To date, however, the concentrations of most redox flow battery chemistries 
have been low, below the 1-2M concentration level. Recently, a new type of 
ionic liquid (IL) redox flow chemistry has been developed that raises this to 
5-6M, and improves the energy density of the system. However, little is 
known about the structure of the molecule in the charged and discharged 
states. The current understanding of the structure of the IL, primarily the Fe 
IL, comes from primarily from FTIR, Raman, and TGA/DSC data, as 
traditional methods such as NMR to probe surface chemistry are limited due 
to the paramagnetic Fe center. It is believed the coordination of the ligand 
to the metal center occurs primarily through the alcohol groups. Cyclic 
voltammetry of the FeIL exhibits behavior associated with Fe(III)/Fe(II) 
reduction/oxidation, with some evidence that the ligands are coordinating to 
adjacent Fe atoms, resulting in antiferromagnetic coupling between the 
metal centers. A complete, fundamental understanding of the local 
coordination and ligand environment is not known and is the primary goal 
of our research. To further understand this structure, we have constructed a 
new electrochemical cell to be used for in situ transmission Fe K-edge x-ray 
absorption fine structure (XAFS) spectroscopy. We conduct our 
measurements at various states of charge, and the structure of the molecule 
in these various states is determined using this from analyzing both the 
XANES and EXAFS. Effects of electrochemical cell potential on local 
structure of the FeIL will be discussed. 

9:20am  IS+AS+MC+SS-WeM5  Monitoring Catalysts during Catalytic 
Reactions with In Situ Raman Spectroscopy, Israel Wachs, Lehigh 
University INVITED 
The surfaces of heterogeneous catalysts in reactive environments are 
dynamic and require in situ characterization studies under reaction 
conditions to fully understand their fundamental structure-activity 
relationships. This presentation will focus on the application of Raman 
spectroscopy to determine the nature of the catalytic active sites in different 
reaction environments. Emphasis will be placed on investigating 
heterogeneous supported metal oxide catalysts containing multiple catalytic 
active sites and determining the roles of each of the sites. Some of the 
examples to be presented will be the metathesis of H2C=CHCH3 to 
H2C=CH2 and H3C-CH=CHCH3 by supported ReOx/Al2O3 catalysts, 
polymerization of H2C=CH2 by supported CrOx/SiO2 and methane 
conversion to aromatic liquids by supported MoOx/ZSM-5 catalysts. 

11:00am  IS+AS+MC+SS-WeM10  Photoelectron Spectroscopy on Ice, 
Mineral Oxides and Aqueous Solutions of Atmospheric Relevance, 
Markus Ammann, Paul Scherrer Institut, Switzerland INVITED 
Aerosol particles and ice are key in atmospheric chemistry as many 
chemical and physical processes occurring on and within them are relevant 
for air pollution and climate. The fundamental understanding of these 
processes increasingly relies on a molecular level description of structures 
and mechanisms. This requires tools to access condensed phase – air 
interfaces with structural and chemical selectivity. Recent advances in 
pushing the pressure limits of ultrahigh-vacuum surface science methods 
such as photoelectron spectroscopy have allowed the investigation of 
environmentally relevant surfaces under nearly ambient conditions and have 
thereby significantly contributed to the advancement of our understanding 
of interfaces in the atmosphere. In this overview, recent results on the 
interaction of acidic gases with ice surfaces, of chemical and photochemical 
processes on mineral oxides, and of the structure of aqueous solution 
surfaces will be presented. These examples also demonstrate the 
instrumental requirements for such in situ experiments, and our recent 
developments of sample environments to facilitate experiments with 
environmental substrates will be presented. 

11:40am  IS+AS+MC+SS-WeM12  In Situ Analysis of Materials Under 
Mechanical Stress: A Novel Instrument for Simultaneous 
Nanoindentation and Raman Spectroscopy, Chris Michaels, Y.B. 
Gerbig, R.F. Cook, NIST 
Instrumented indentation or “nanoindentation” is a method that is widely 
used in the study of the mechanical deformation of materials on small 
length scales (~ micrometer). Raman spectroscopy is a technique that 
provides insight into the molecular or crystallographic level processes 
involved in the mechanical deformation of materials, such as strain build-
up, phase transformations and variations in crystallinity. Typically these 
approaches have been used separately wherein the spectroscopic analysis of 
the material might take place prior to and after the end of a mechanical 
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transformation. Of course, there is significant interest in in situ analyses of 
materials during mechanical transformation as such an approach promises a 
richer understanding of the underlying physics than is likely possible with 
analysis limited to pre- and post-transformation. For example, the ability to 
follow the path of phase transformations rather than just the endpoints is 
certainly desirable. Consequently, significant effort has been directed 
toward the coupling of indentation instruments with various in situ analysis 
capabilities.  

This talk describes the design and operation of a nanoindentation instrument 
that is coupled with a laser scanning Raman microscope to conduct in situ 
spectroscopic analyses of mechanically deformed regions of optically 
transparent materials under contact loading. The force transducer of the 
device allows adjustment of crucial experimental parameters, such as 
indentation loads and loading rates. An incorporated displacement sensor 
allows for collection of force-displacement curves comparable to 
conventional nanoindentation instruments. The device is mounted on the 
sample stage of an inverted optical microscope that is configured for Raman 
microscopy, allowing optical access to the mechanically deformed regions 
of transparent samples. The capabilities of this novel instrument will be 
demonstrated by in situ studies of the indentation-induced phase 
transformations in an epitaxial silicon-on-sapphire (SoS) thin film, in both a 
microspectroscopy and a laser scanning Raman imaging configuration. 
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