AVS 61st International Symposium & Exhibition
    Scanning Probe Microscopy Focus Topic Thursday Sessions
       Session SP+2D+AS+EM+MC+NS+SS-ThM

Paper SP+2D+AS+EM+MC+NS+SS-ThM6
Asymmetric Electron Transport Revealed at Monolayer-Bilayer Graphene Junctions by Atomic-Scale Scanning Tunneling Potentiometry

Thursday, November 13, 2014, 9:40 am, Room 312

Session: Probing Electronic and Transport Properties
Presenter: An-Ping Li, Oak Ridge National Laboratory
Authors: K. Clark, Oak Ridge National Laboratory
X. Zhang, Oak Ridge National Laboratory
J. Park, Oak Ridge National Laboratory
G. Gu, University of Tennessee
G. He, Carnegie Mellon University
R.M. Feenstra, Carnegie Mellon University
A.P. Li, Oak Ridge National Laboratory
Correspondent: Click to Email

The quest for novel two-dimensional (2D) materials has led to the discovery of hybrid heterostructures of graphene and other 2D atomic films [1]. These heterojunctions provide us fascinating playground for exploring electronic and transport properties in 2D materials. Even in graphene itself, there usually exist large amount of extended topological defects, such as grain boundaries, changes in layer thickness, and substrate steps, which divide graphene into grains and domains. These interfaces and boundaries can break the lattice symmetry and are believed to have a major impact on the electronic properties, especially the transport, in 2D materials.

Here, we present our recent study on an asymmetric electron transport upon bias polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by multi-probe scanning tunneling potentiometry [2,3]. A greater voltage drop is observed when the current flows from monolayer to bilayer graphene than in the reverse direction, and the difference remains nearly unchanged when bias exceeds a threshold. A thermovoltage is measured across the boundary due to the thermopower difference between the two sides, which however is too small to account for the observed asymmetry. Interestingly, this asymmetry is not from a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of an energy gap at the Fermi energy. Our theoretical analysis finds that Friedel charge oscillation opens a gap for electrons with wave vectors perpendicular to the boundary. The Friedel gaps are different on the monolayer and bilayer sides, which can shift under bias and lead to asymmetric transport upon reversing the bias polarity. A quantitative agreement is seen between experiment and theory on both the sign and the magnitude of the asymmetry.

1 “Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges”, L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J.-C. Idrobo, A.-P. Li, G. Gu, Science343, 163-167 (2014).

2 “Spatially Resolved Mapping of Electrical Conductance around Individual Domain (Grain) Boundaries in Graphene”, K. W. Clark, X.-G. Zhang, I. V. Vlassiouk, G. He, R. M. Feenstra, and A.-P. Li, ACS Nano. 7 (9), 7956-7966 (2013).

3 “Friedel Oscilation-Induced Energy Gap Manifested as Transport Asymmetric at Monolayer-Bilayer Graphene Boundaries”, K. W. Clark, X.-G. Zhang, G. Gu, G. He, R. M. Feenstra, and A.-P. Li, arXiv: 1401.1796, Physical Review X4 (1), 011021 (2014).